LISSOM Maps for Multiple Features

Dr. James A. Bednar

jbednar@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/jbednar
Input feature dimensions

Orientation is only one of many input features that can be detected within a pair of small circular apertures:

Others:

- Ocular dominance: which eye has the pattern?
- Motion direction
- Spatial frequency
- Color
- Disparity: position offset between eyes
Ocular dominance

In species with binocular vision (forward-facing eyes), layer 4 typically has an alternating map of eye preference.

In normal, non-strabismic cats, the long-range lateral connections in layer 2/3 do not typically follow this map.

The OD map is aligned with the map for orientation, such that boundaries between OR regions typically intersect OD borders at right angles.

Similarly, regions of large OR gradient typically do not intersect OD borders.
Ocular dominance maps and lateral connections

Normal cat

Strabismic cat

(Löwel & Singer 1992)
Combined macaque OR/OD map

(Macaque; Blasdel 1992)
LISSOM ocular dominance model

Same as orientation map model but with two eyes and circular Gaussians.

Basic simulation: Both eyes identical except for brightness
Self-organization of afferent weights into OD receptive fields

Initially, all CFs were identical.

Some neurons end up binocular, some partly monocular.
Self-organized OD map

Smoothly varying distribution of OD preferences.

Ranges from partly monocular through strongly binocular.
OD lateral connections

Monocular neurons connect primarily to one eye.

Binocular neurons connect to both eyes.

Partly monocular

Strongly binocular

OD lateral connections

CMVC figure 5.17
Strabismic case: Positions entirely uncorrelated.

Nearly all neurons become strongly monocular; lateral connections are purely monocular (as in cats).
Factors driving OD map development

OD in LISSOM must be driven by differences in input activity.

Previous slides showed results based on brightness differences (which we will call Dimming) and complete position differences (strabismus).

Can mild position differences account for OD also?
OD: Mild disparity

Left retina

Right retina

RFs

LIs

OD selectivity

OD preference

OD H
OD: Moderate disparity

Left retina

Right retina

RFs

LIs

OD selectivity

OD preference

OD H

CMVC figure 5.19, Moderate
OD: Strabismic disparity

Left retina

Right retina

RFs

LIs

OD selectivity

OD preference

OD H

CMVC figure 5.19, Strabismic
OD map conclusions

Disparity does not appear to be a likely driver for realistic OD, where most neurons are expected to be binocular. Unclear what Dimming condition represents, yet results are more plausible.

Not yet clear in animals whether OD is activity dependent or not.

Next: joint OR/OD map, with same architecture but Dimmed oriented inputs.
Self-organized OR/OD map

Each map is a good match to separate maps, animals.
Joint OR/OD map plots

Joint map interactions are similar to animal results.
OR/OD: Lateral connections

As we will see next, the lateral connections in the OR/OD map closely match the results from the separate OR and OD simulations.

Long-range lateral connections link neurons with similar orientation preferences, but typically connect to both eyes. Thus multiple maps can be represented simultaneously in the same set of neurons without disrupting one another.
OR/OD: OR lateral connections

OR weights

OR connections ORH

OR connections

Iso-OR patches OR pinwheels OR saddles OR fractures

CMVC figure 5.28
OR/OD: OD lateral connections

Weights

OD connections ODH

OD connections

Iso-OR patches OR pinwheels OR saddles OR fractures

CMVC figure 5.28
Combined OR/DR maps in animals

(Weliky et al. 1996)

Ferret DR map

Ferret OR/DR map

Ferrets and cats have maps for motion direction.

Global organization similar to OR, but 360° periodicity.

Often one OR patch is subdivided into opposite DR prefs.
LISSOM model of OR/DR

Same as Gaussian orientation map model, but with four different copies of the retina, each with different delays.

Models lagged cells in cat LGN.

(Mastronarde et al. 1991; Saul & Humphrey 1992)
Self-organization of afferent weights into spatiotemporal RFs

Nearly all neurons develop strong preferences for moving, oriented Gaussians.
OR/DR: Orientation map

Preference

Selectivity

Orientation map similar to OR-only map, animals.
OR/DR: Direction map

Preference
Selectivity

Pref. & selectivity
Histogram

Direction map similar to OR map, animals.
OR/DR: Joint map, connections

As we will see next, the joint OR/DR map often has direction patches meeting at right angles.

The lateral connections are similar to the OR case, but also respect the DR map, so that long-range connections link neurons with similar OR \textit{and} DR preferences (strong prediction).
Gaussian OR/DR map
OR/DR: OR lateral connections

Connections in iso-DR patches
Connections in DR pinwheels
Connections in DR saddles
Connections in DR fractures
OR/DR: DR lateral connections

Connections in iso-DR patches
Connections in DR pinwheels
Connections in DR saddles
Connections in DR fractures

CMVC figure 5.24
OR/DR: Effect of input speed

Varying the input speed allows us to smoothly trade off between a map dominated by orientation (slow speeds) and one dominated by motion direction (fast speeds).

Meaningful top speed is limited by the size of the anatomical CF – if too fast, only one delayed image will match any CF.

Map organization smoothly changes from large-scale OR organization to large-scale DR organization.
OR/DR map: Speed 0

Retina at 0

OR pref. & sel.

OR FFT

RFs LIs DR pref. & sel.

DR FFT

CMVC figure 5.25, speed 0

CNV Spring 2008: LISSOM Maps for Multiple Features
OR/DR map: Speed 1

Retina at 0

OR pref. & sel.

OR FFT

RFs

LIs

DR pref. & sel.

DR FFT

CMVC figure 5.25, speed 1
OR/DR map: Speed 2

Retina at 0

OR pref. & sel.

OR FFT

RFs LIs

DR pref. & sel.

DR FFT
OR/DR map: Speed 3

Retina at 0

OR pref. & sel.

OR FFT

RFs LIs

DR pref. & sel.

DR FFT

CMVC figure 5.25, speed 3
Simulating OR/OD/DR

Joint simulation of orientation, ocular dominance, and direction maps.

Same V1 architecture as all previous cases, but now with even more LGN sheets.

Still not yet approaching true complexity of early visual system – needs color (at least five times as many LGN sheet types needed), multiple spatial frequencies (at least twice as many LGN sheet types needed), input disparities, and probably other LGN cell types.
LISSOM model of OR/OD/DR

[Diagram of LISSOM model with layers labeled LGN, 0, 1, 2, 3, ON, OFF, Right retina, Left retina, and V1.]
Gaussian OR/OD/DR map
OR/OD/DR: Nature

OR/OD/DR map with natural image input

(Shouval et al. 1996, 1997).

Uses same architecture as Gaussian case, with dimming and lagged LGN cells.

Similar results, but greater variety of RFs and less selectivity overall.
OR/OD/DR training images

Right retina

Time 0 Time 1 Time 2 Time 3

Left retina

Time 0 Time 1 Time 2 Time 3
Natural image OR/OD/DR map
OR/OD/DR: Gaussians

Retina

OD pref.

OR pref. & sel.

RFs

LIs

DR pref. & sel.

CNV Spring 2008: LISSOM Maps for Multiple Features
OR/OD/DR: Noisy disks

Retina

OD pref.

OR pref. & sel.

RFs

LIs

DR pref. & sel.

CMVC figure 5.32, Noisy disks
OR/OD/DR: Nature

Retina

OD pref.

OR pref. & sel.

RFs

LIs

DR pref. & sel.

CMVC figure 5.32, Nature
Other dimensions in V1

Since the book has been published, all the other major dimensions have also been replicated in LISSOM:

- Color (CL): Joint work with Judah De Paula (Bednar et al. 2005)
- Spatial frequency (SF): Joint work with Christopher Palmer (Palmer & Bednar 2006)
- Disparity (DY): Joint work with Tikesh Ramtohul (Ramtohul 2006)

No one has yet combined OR/OD/DR/CL/SF/DY, but there is no reason in principle that it would be difficult (just unwieldy, with at least 160 types of LGN cell sheets)
Summary

Same LISSOM V1 can be used to model numerous feature dimensions, without modification.

Theory: cortical areas are similarly equipotent, and can reorganize to represent or process any dimension that typically varies and that our sensors can detect.

Though the organization is driven entirely by the input, a large class of inputs typically suffices to develop preference for a given feature.

In each case, the lateral connections store the long-range correlations in activity patterns within V1.
References

