
Introduction to Python - Part II

CNV Lab

Paolo Besana and James Bednar

29 January - 2 February 2007

� Open a terminal window, and go to the folder �MyPython� that you created
during the �rst tutorial (or make a new one for this tutorial).

� Launch your preferred editor (emacs, vim, kate,...) in the background
(using &)

� launch the python shell

1 Object-Oriented Programming

A class is de�ned using the keyword class, followed by the class name and
then �(object)�. The class body must be indented, and the �rst expression can
be a documentation string. A method is a function that �belongs to� a class.
Methods must have, as their �rst parameter, the variable self, which contains
a reference to the object itself. It is equivalent to the variable this in Java, with
the di�erence that you need to pass it explicitly. By default, all methods and
attributes in Python are public. It is possible to make them �pseudo� private,
adding two underlines before their name (for example as in __func(self)),
although dedicated hackers can still access private values if they wish.

� Type the lines introduced by �>>>� and by �...�

> > > class MyClass(object):

... """A very simple class"""

...

... def greet(self, name):

... return "Hello, " + name

A class is instantiated into an object, and methods of the instance can be called
as in Java.

� Type the lines introduced by �>>>� and by �...�

> > > c = MyClass() # object instantiation

> > > c.greet("paolo")

Classes can have an initialisation method __init()__ similar to the class
constructor in Java. This method is called when the class is instantiated and

1



can have a set of arguments. In contrast with Java, which requires di�erent
constructors to handle di�erent types and numbers of arguments, Python uses
only one constructor method per class.

� Type the lines introduced by �>>>� and by �...�

> > > class Greeter(object):

... """A simple class"""

... def __init__(self, greeting):

... self.greeting = greeting

... def greet(self, name):

... return self.greeting + ", " + name

...

> > > c2 = Greeter(�hi")

> > > c2.greet("tim")

The �(object)� after each class name in its de�nition speci�es that it should
derive (inherit) from the general-purpose �object� class. (Among other things,
this makes the class be �new-style�; old-style Python classes inheriting from
nothing are deprecated and should be avoided.) Classes can also derive from
any other existing class or other classes, and they then inherit the methods and
attributes of the parent class(es):

� Type the lines introduced by �>>>� and by �...�

> > > class GreeterEx(Greeter):

... """A derived class"""

... def bye(self):

... return "Bye Bye"

...

> > > c3 = GreeterEx("hello")

> > > c3.greet("mr smith")

> > > c3.bye()

This class will contain the methods de�ned in Greeter, plus the new bye()

method.

Exercise 1

Using your preferred editor, create a class that checks if a string (infix) is
contained in other strings. The class must be initialised passing the infix

string, that must be stored in a class variable. The class must expose the
method check(string) that veri�es if infix is contained in the passed string
(you can use the operator in to verify if a string is contained in another one:
string1 in string2).Remember to use self when trying to access methods
and attributes of the instance.

Import your module into the python shell, and test its behaviour (you must
instantiate the class passing the in�x string, and then call the method check
passing di�erent strings)

Note

2



If you use the statement import modulename , remember to use the modulename
pre�x in front of the class name. If you make an error in the class, and you need
to reimport the module, use reload(modulename): import will not reimport a
module already imported. You will also have to reinstantiate the class.

2 More on Data Types

2.1 Lists

It is possible to create nested lists:

� Type the lines introduced by �>>>� and by �...�

> > > L1 = [1, 2, 3]

> > > L2 = ['one',L1,'two']

> > > L2

We have already seen the method append() for the list data type in the previ-
ous lab. We will see some more today. All the following operations are in place,
that is they change the object on which they are applied.

� insert(i,x)

insert the item x at position i.
Type:

> > > L2 = ['a','b','d','e']

> > > L2.insert(1,'c')

> > > L2

� remove(x)

removes the �rst item in the list whose value is x.
Type:

> > > L2.remove('d')

> > > L2

� pop([i])

returns (and removes) the last item in the list (or the item in position i).
Type:

> > > L2.pop()

> > > L2

� sort()

sort the items of the list.
Type:

> > > L2.sort()

> > > L2

� reverse()

reverse the elements of the list.
Type:

> > > L2.reverse()

> > > L2

� del

can be used to remove items from a list using the index. It can also be
used to remove slices from a list.
� Type the lines introduced by �>>>� and by �...�

3



> > > del L2[1:3]

> > > L2

You can iterate over a list retrieving the index and the value at the same time
using the enumerate(list) function.

� Type the lines introduced by �>>>� and by �...�

> > > for i, v in enumerate(['a','b','c','d']):

... print i, v

If you have two lists of the same length, you can step through both lists at
once using the zip(list1,list2) function.

� Type the lines introduced by �>>>� and by �...�

> > > for l,u in zip(['a','b','c','d'],['A','B','C','D']):

... print l,u

Exercise 2

� Using your preferred editor, create a class named Queue that models a
queue: the �rst element that enters is the �rst that exits (FIFO: First In,
First Out). The class will use a list to maintain the data. It will expose
the following methods:

. isempty(): veri�es if the queue is empty

. push(item) inserts an element at the end of the queue

. pop() : extracts and returns the �rst element in the queue (possibly
only if the queue is not empty)

� Import the module into the python shell, and test it

Remember to create the list that contains the data before accessing to it.

Exercise 3

� Using your preferred editor, create a class named Stack that models a
stack: the last element that enters is the �rst that exits (LIFO: Last in,
First Out). The class willl use a list to maintain the data. It will expose
the following methods:

. isempty(): veri�es if the stack is empty

. push(item): inserts an element at the end of the stack

. pop(): extracts and returns the last element of the stack (possibly
only if the stack is not empty)

� Import the module into the python shell, and test it

Remember to create the list that contains the data before accessing to it.

4



Tuples

A tuple is composed of a number of values separated by commas, and enclosed
by parentheses.

� Type the lines introduced by �>>>� and by �...�

> > > T = (1,2,'three')

> > > T

> > > T[2]

Tuples can be nested.

� Type the lines introduced by �>>>� and by �...�

> > > T1 = (1,2,(3,5))

> > > T1

Tuples (like strings and unlike lists) are immutable and can not bechanged once
created. If you try, you will get an error message.

� Type the lines introduced by �>>>� and by �...�
> > > s = "hello"

> > > s[1] = "u"

> > > T1[2] = 3

Sets (only from version 2.4)

A set is an unordered collection with no duplicate elements. Set objects sup-
port mathematical operations like union, intersection, di�erence and symmetric
di�erence.

Type:
> > > A = set([1,2,3,4,5,2,3])

> > > A

> > > B = [2,2,4,5,6,7]

> > > B

> > > 1 in A

> > > 1 in B

> > > A|B # numbers in either A or in B (union)

> > > A&B # numbers in A and B (intersection)

> > > A-B # numbers in A but not in B

Dictionaries

Dictionaries are indexed by keys, which can be any immutable objects (num-
bers, strings, tuples, etc.) Lists cannot be dictionary keys, because lists are
mutable. A dictionary can be seen as an unordered set of key:value pairs, with

5



the constraint that keys need to be unique. The main operations performed on
dictionaries are storing and retrieving values by their keys.

� Type the lines introduced by �>>>� and by �...�

> > > num = {'one':1, 'two':2, 'three':3, 'four':4}

> > > num['three']

> > > num

You can easily add a new item to the dictionary:

� Type the lines introduced by �>>>� and by �...�

> > > num['five'] = 5

> > > num

You can delete one item from the dictionary using the built in function
del(item):

� Type the lines introduced by �>>>� and by �...�

> > > del(num['three'])

> > > num

To list all the keys from a dictionary, you use the method keys(). To check
if a key belongs to the dictionary you use the method has_key().

� Type the lines introduced by �>>>� and by �...�

> > > num.has_key('one')

> > > num.keys()

You can iterate over a dictionary, retrieving the keys and their corresponding
values using the method iteritems()

� Type the lines introduced by �>>>� and by �...�

> > > for k, v in num.iteritems():

... print k,v

...

See also iterkeys() and itervalues(), which do what one might expect.

Exercise 4

� Create a class for managing a phone book. The user must be able to:

. insert a name and the associated phone number,

. obtain a number from a name,

. verify if name is in the book,

. list all the names and phone numbers in the book,

. delete a name from the book

. as optional feature, the user should be able to print in alphabetical
order the names and their phone numbers

6



� Import your class into the python shell, and test it (remember to instan-
tiate the class).

Hint

Use a dictionary to store the data, and remember to create it before using it.
You can use the method keys() to obtain the list of all the keys. Then you can
apply any method available for the lists on the obtained list.

3 Pattern matching

The re module provides a tools for regular expressions.

� Type the lines introduced by �>>>� and by �...�

> > > import re

� match(pattern, string)

If zero or more characters at the beginning of string match the regular
expression pattern, it returns a corresponding MatchObject instance. It
returns None if the string does not match the pattern.
Type:

> > > re.match("(aa|bb)+", "aabbaa")

> > > re.match("(aa|bb)+", "abba")

� findall(pattern, string)

It returns a list of all non-overlapping matches of pattern in string.
Type:

> > > re.findall("[a-z]*th[a-z]*", "I think this is the right one")

� sub(pattern, repl, string)

It returns the string obtained by replacing the leftmost non-overlapping
occurrences of pattern in string by the replacement repl.
Type:

> > > re.sub("[a-z]*th[a-z]*", "TH-word", "I think this is the right one" )

Exercise 5

� Create a regular expression that checks if a string starts with 3 binary dig-
its (and test it: 010asda must be recognised, while 1aa must be rejected)

� Using a regular expression, write a python statement that �nds all the
words that end with �ly� in strings (and test it, for example using the
sentence �it is likely to happen rarely�)

� Using a regular expression, write a python statement that replaces all the
words that start with �wh� with �WH-word� (and test it, for example in the
sentence �who should do what?�)

7



4 Passing parameters to scripts

It is possible to pass parameters to a script.

� exit from the python shell

� create in your editor a �le named test.py

� Type in the editor:
import sys

for arg in sys.argv:

print arg

� Save the �le

� Type in the shell:
python test.py these are the arguments

The arguments are stored in the variable sys.argv, which is a list of strings.
sys.argv[0] contains the name of the script, while the following elements con-
tain the arguments.

5 Advanced Topics

5.1 Class vs. instance attributes

When you de�ne an attribute �x� in a Python class, it matters whether you set
its value in the class de�nition or in the constructor for the class.

For instance,

> > >

> > > class A:

... list1=[0,1,2]

... def __init__ (self):

... self.list2=[3,4,5]

...

> > >

> > > x=A()

> > > y=A()

> > > x.list1.append(6)

> > > x.list1

> > > x.list2.append(7)

> > > x.list2

> > > y.list1

> > > y.list2

8



That is, there is a copy per instance for anything set in the constructor, but
only one copy per class for anything set in the class de�nition. This di�erence
is subtle, but often crucially important.

Exercise 6

� Write a class that counts the number of times it has been instantiated. If
an instance is deleted the counter is not decreased.

5.2 Memory management/argument passing

Like most scripting-style languages, Python does automatic memory manage-
ment, and so the user does not normally need to worry about allocating and
releasing system memory for objects. Basically, variables such as �x� or �cl.x�
refer to objects stored in memory, and the system keeps track of how many
references there are to each object. When there are no references remaining,
Python will eventually remove the object from memory.

However, it is important to understand how objects in memory are named
and passed around, particularly when arguments are given to classes and func-
tions. For instance, after typing �x=0�, the attribute �x� has the value 0, stored
in some particular location in memory to which �x� points. If you then type
�x=2�, a new object with the value 2 is created, and then �x� is changed to point
to that object instead. Note that this is very di�erent from languages like C
and Java, where �x=2� puts the value 2 into the location in memory to which
�x� already points, rather than changing where �x� is pointing.

Thus, when calling a function, Python typically acts as if it uses 'call by
value' semantics (even though it is really always passing references around):

� Type the lines introduced by �>>>� and by �...�

> > > x=0

> > > def fun(a): a=3 ; return a

...

> > > fun(x)

> > > x

> > >

Here �a� at �rst refers to the same item in memory that x does, but then after
�a=3�, �a� refers to a new object with the value �3�. In any case, the value of
�x� is still 0; fun cannot change what �x� points to.

Where this gets confusing is when �x� is what is called a �mutable� object,
such as a list. For instance:

� Type the lines introduced by �>>>� and by �...�

> > > x=[0,1,2]

> > > def fun(a): a.append(3) ; return a

...

> > > fun(x)

9



> > > x

> > >

Here, a.append() modi�es the same item in memory as �x� points to, because
the append() operator modi�es the item 'in place'. (Unlike the = assignment
operator, which changes x to point to a new object!) Thus these results are very
di�erent from what is obtained when an assignment operator is used instead of
append():

> > > x=[0,1,2]

> > > def fun(a): a = x+[3] ; return a

...

> > > fun(x)

> > > x

> > >

The simple rules to remember are that assignment with = changes the attribute
to point to a new object (which has no e�ect if the attribute is just a func-
tion argument), but that otherwise objects may be modi�ed in place, and it is
important to know which functions or methods do that.

10


