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Abstract and receive a to-do list whenever we enter or leave a par-
Continuously understanding a user’s location context in ticular place [22, 27]. Social applications plan to provide
colloquial terms and the paths that connect the locations un services for seamlessly sharing whereabouts, querying use
locks many opportunities for emerging applications. While that are presently located at an art gallery, and inferring
extensive research effort has been made on efficiently4track hotspots by the frequency of physical visits by users [8, 7].
ing a user’s raw coordinates, few attempts have been madelracks generated by humans also provide useful information
to efficiently provide everyday contextual information abo  for map building, traffic estimation, and ride sharing [3], 1
these locations as places and paths. We introduce SensLodyloreover, automatically detected visit and travel behavio
a practical location service to provide such contextualinf ~ can help studies of human spatial and temporal behavior,
mation, abstracting location as place visits and path lsave and support research for urban planning, sustainability, e
from sensor signals. SensLoc comprises of a robust place dedemics, and health care [9, 28]. Interestingly, all these ap
tection algorithm, a sensitive movement detector, and an on plications can benefit from continuously understanding and
demand path tracker. Based on a user’'s mobility, SensLockeeping track of location as people normally do: places and
proactively controls active cycle of a GPS receiver, a Wi- paths. By automatically learning the places that one visits
Fi scanner, and an accelerometer. Pilot studies show thathroughout one’s daily life, noticing when one enters and
SensLoc can correctly detect 94% of the place visits, track leaves these places, and remembering paths one travels be-
95% of the total travel distance, and still only consume 13% tween them, we can unleash many interesting applications.

of energy than algorithms that periodically collect coerdi An obvious choice for tracking a user’s location context
nates to provide the same information. today is to periodically collect coordinates from avaibl
positioning systemse(g., GPS) and directly provide them
Categories and Subject Descriptors to applications. Places of interest are manually defined by
C.3 [Special-purpose and Application-based Systerfs drawing a circle or a polygon ahead of time, _and paths are
Real-time and embedded systems parsed from day-long traces by post-processing algorithms

if not done manually. However, we argue that such schemes

General Terms fail in discovering many interesting indoor places, stiegg

Algorithms, Experimentation, Human Factors to scale, and consume unnecessary energy. Most of the
Keywords places we go and stay are indoors, and even a single build-
Semantic Location Context, Energy-efficient Tracking.  ing (or adjacent ones) can contain multiple places espgcial
1 Introduction in dense urban environments. Unfortunately, this is where

current positioning systems suffer in providing accurate p
sition fixes. Manually delineating and labeling places from
scratch one by one also does not scale and can omit inter-
esting places that we are less conscious of having visited.
Moreover, continuously tracking a person’s location comes
This work was supported in part by NSF Grant CNS-0529235. with a significant energy cost, discouraging potential siser
Current track-based applications either cope with a redluce
sampling rate with lower fidelity or depend on users to man-
ually start and stop tracking. Recently, many researchtsffo
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Sensys'10November 3-5, 2010, Zurich, Switzerland. In this paper, we present SensLoc, a system that provides

Copyright 2010 ACM 978-1-4503-0344-6/10/11 ...$10.00 user’s location context as places and paths while reducing

As mobile devices have become capable of locating them-
selves almost all the time, a variety of mobile applications
have emerged that seek to continuously track a user’s loca
tion context. For instance, geo-reminders allow us to set
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its impact on the device’s battery life. We show that inter-

preting location closer to our semantics not only provides a
richer set of context information, but also plays a key rale i -— e e e er e e e e e -
designing an energy-efficient location tracking mechanism SensLoc Service
Studies have shown that people spend approximately 89% places. st SensLoc Manager

of the time indoors and 5% in a vehicle with the remaining

6% spent at outdoors [16]. Thus, GPS, which provides ac-

Movement

L. . . . Path Tracker ~ P  Place Detector Pl
curate position fixes when it has a clear view of sky, may Detector

only be needed for about 10% of the time while other adap- wm o= o o= oo oo oo oo o o -

tive and more energy-efficient mechanisms should be used

to detect semantic indoor places for the majority of the time PG
The key challenges we face to provide such service are 1)
accurately detecting places closer to our semantics, B} aut
matically parsing travel paths from day-long location ésc
and 3) minimizing energy consumption.

We overcome these challenges by designing a robustfoods @westwood”. A user can recall the place by look-
place detection algorithm, a sensitive movement detector,ing at the visit time, presented as enter and leave time, and
and an on-demand path tracker. A place detection algorithmthe associated geographic coordinate, plotted on a magp, pro
attempts to automatically find places (colloquial reprégen  vided as a hint. Revisited places are recognized using pre-
tions of locations such as “my office’ or “5th floor cafe”) viously saved place signatures. Entrance to and departure
that carries a semantic meaning to an individual user. Se-from selected places are notified to applications requgstin
mantic places are directly inferred from pervasive radip si  the place detection service. When a user leaves a place,
nals by periodically scanning neighboring beacons. To re- path tracking (if enabled) is initiated until the user arrives
duce energy consumed during a stay at a place, scans arat another place. Any positioning system available on the
suspended while a movement detector detects no movemenglevice can be used including GPS or systems supported by
from a more energy-efficient inertial sensor. A path is de- energy-efficient mechanisms [20, 25, 6, 15] to track paths.
fined as a set of time series coordinates that interconnectsf path recording is requested, paths are saved, and provided
places. Paths are tracked by acquiring periodic positi@sfix to various applications requesting the service. Unreabrde
from position systems only when traveling between places. path tracking can also provide real-time current positions

Our main contributions are as follows: We 1) propose a navigation and location-based search applications with mi
new abstraction of continuous location: places and padhs, 2 imum delay by periodically updating the user’s current po-
present a framework that provides location context as place sition. This is also when real-time positions are most likel
and paths using less energy, and 3) provide quantitatide stu used €.g., when I’'m mobile), and quick responses are most
ies illustrating expected performance and energy cost whenappreciated€g., when I'm lost).

2 %
v~ RF Signal = Acceleration

Figure 1. System Architecture

used everyday. Figure 1 presents the overall architecture of SensLoc. The
To evaluate our framework, we gathered three different system consists of three main building blocks to provide its
data sets from both real-life and scripted-tours. Fiveuiitdi service while reducing its energy requirements: placecdete

uals collected data for a week and two people for four weeks tor, movement detector, and path tracker. In the next sec-
as they went about their normal lives. A scripted-tour data tion, we describe a particular set of algorithms using GPS,
set comprised of 50 visits to 25 different places people go Wi-Fi, and accelerometer that implement these architattur
often near a campus. Each volunteer also kept a written di-elements, but other algorithms can be deployed. The place
ary of places they visited with enter and exit times. Using detector regularly scans neighboring radio beacons t@tete
these data sets, we evaluate SensLoc’s effectiveness in deplace visits when the radio environment stabilizes indtgat
tecting place visits, tracking travel paths, and its overal an entrance. Once an entrance is determined, the place de-
ergy consumption during a daily operation. While the perfor tector consults with the place database to recognize tlee pla
mance and cost indeed depends on a user’s surrounding anend triggers the movement detector to find opportunities to
travel patterns, we show that SensLoc consistently outper-sleep. If no movement is detected, the movement detector
forms previous place learning techniques, promptly tracks signals the place detector to sleep, and awakens it when a

paths, and saves significant energy. movement is detected again. When the place detector senses
) that the surrounding radio environment is changing, it de-
2 System Overview clares a place departure, saves the visit history, turnsheff

We first describe a high level usage scenario of the sys-movement detector, and powers on the path tracker. Path
tem, and then present the internal details. As SensLoc rungracking is initiated and records the path to the path databa
in the background of the mobile device, places are gradu- (if enabled) until the next place visit. Path tracker camals
ally learned as a user visits them and spends a substantiahint the place detector to sleep when the user is traveling
amount of time. A new place is learned by saving its place at high speeds, and unlikely to approach a place anytime
signature whenever a visit to an unknown place is detected,soon. We use Wi-Fi access points (APs) to sense places,
and sometime later in the day asking the user to confirm andaccelerometer to detect movements, and GPS to track paths.
tag a name, such as “home”, “Fred’s office”, or “Organic We describe the details next.
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Figure 3. Changes in signal strength when a user visited twolaces in
different floors. Relying on the absence of every representiae beacons
to detect departure fails in detecting direct visits to adjaent places.

Accelerometer
T T

g | | and others have shown that a well defined set of beacons can

£ ) " 1 overcome the noisy radio environment [11, 14].

2 “J'U. migwgm—"* i Our place detection algorithm is built upon previously
ops proposed ideas. However, we improve its ability to discrim-

inate close places governed by common beacons and reduce
false place detections by exploiting signal strength ckang
T and adapting to diverse beacon densities. Like other ap-
%0 0990 1090 1100 1200 1950 1400 15 1690 1700 18 1890 200 7100 proaches, a scan window, as opposed to a single scan, is used
Time to tolerate noisy radio signals and beacon losses. A window
sizew defines the number of scans used for each operation.
Sliding windows are used to provide more accurate detection
as opposed to non-overlapping windows. Locally adminis-
tered APs €.g., local networks created by laptops or mobile
phones) are pre-filtered to rely on static APs. These can be
distinguished by examining the second least significarafbit
the most significant byte of the mac address. This simple fil-
tering helps significantly in reducing false place detawtio
Similar radio environment is determined using the Tan-
imoto coefficient [12], which is widely used for measuring
similarity between two fingerprints; andF,. The Tanimoto
similarity penalizes a small number of shared entries (bea-

Accuracy (m)

(a) Sensor data

(b) Corresponding Location Trace

Figure 2. Location and sensor traces from a single day folloimg nor-
mal routines. The icons on the top row illustrate the ground tuth. Each

dot in the Wi-Fi scatter plot is a beacon found from a scan. Acelera- COI’]S) more than the cosine S'm'la”ty and is defined as:
tion magnitude variance is computed over 10 second window i 50% Fi
duty-cycling. Accuracy value is reported from the GPS modug. ( 1, |:2) 1

CIRP+R|P-F R

; Input Wi-Fi scans are transformed into vector space so that
3 _SensLoc Algorithms the Tanimoto coefficient can be used. The attribute vectors
are the signal strength vectors of the fingerprints. Our-algo
rithm uses a group of scans (determined by a window size
) to infer fingerprints, defined by the list of beacons, com-

The biggest challenge facing SensLoc is accurately iden-
tifying place visits and path travels while minimizing eggr
usage. We use a novel place visit inference technique, tak

a hyb_nd approach to save energy, and track paths only When‘oined with their signal strength and response rate. Regpons
traveling between places. rate is the ratio of the detection count and the total number
3.1 Place Detection of scans for each beacon, and has been found to be more ro-
Detecting place visits involves two steps: sensing a stable bust in predicting distance than signal strength [4]. Thame
radio environment that indicates an entrance to a place andof the signal strength is calculated ignoring zero values an
detecting significant changes signaling a departure nisitri over the selected group of scans; Zeros are assigned when
noises in the signals caused by multi-path, signal fadind, a the beacons are not detected. Both entrance and departure
interference make such task challenging. Even when stay-detection use this similarity measure, but the scope ofrthe i
ing at a place, beacons may be seen intermittently, particu-cluded scans and beacons in each figerprint differs slightly
larly when transiently traversing edge of certain APs. @lac
ment of the device near a human body also causes interfer- Entrance Detection. Continuously seen similar scan
ence and irregular beacon losses. Beacons are also typicall windows imply potential entrance to a place. Similar to
not confined to a single place. Yet, humans are creaturesother prior works, we determine an entrance whgg con-
of habit constraining their movement in certain areas (even secutive scan windows pass the similarity test. We differ
at a place). As depicted in Figure 2(a), surrounding radio from these works by using the Tanimoto coefficient to mea-
signals can well approximate human location interpretatio  sure similarity. To start an examination of a potential stay
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at a place, the current scan window is saved and comparedicceleration magnitude is computed over all three axis to
against the following scan window. A certainty valogs tolerate random orientations of the device. To detect move-
increased when the Tanimoto coefficient of the previous and ment, we compute the variance of the magnitude over a slid-
current scan window is above threshtdd,. Otherwise, we ing window with window Sizew;ec.

resetc to 0, and clear the fingerprint. Scan windows deter-  We conservatively find sleep opportunities to preserve ac-
mined to be similar are merged for comparison against the curacy, as a couple of more Wi-Fi scans are not extremely
next scan window. A place entry is declared witeeaches  expensive. Our main targets are long-duration sleep oppor-
Cmax- AS Yet not enough statistics of a place are gathered for tunities when the device is left alone. The accelerometer is
more insightful decisions; therefore, we take a consergati turned on when a user enters a place and stays for more than
approach by including all beacons detected in two finger- five minutes. We avoid immediately checking sleep opportu-
prints when computing the coefficient. nities to provide enough time to accumulate beacon stisti

Departure Detection. Scan windows that are dissimilar  of the place. When thevalue used for detecting place visits
from the current place’s fingerprint indicate that the RFenv is atcyax, indicating a steady stay at a place, the variance of
ronment is changing and implies leaving a place. Accumu- the magnitude is compared against a conservative threshold
lated beacon statistics during the stay are used to make morey,,,. If the variance is below the threshold, beacon scans
careful examinations in detecting departures. To supfmess are postponed until the variance is over the threshold again
fluences of infrequent beacons, only a subset of beacons ar&henever a movement is detected, we reactivate the scans
used to measure similarity. After entering a place, we selec for at least 5 minutes to prevent missing place departures
representative beacons with a response rate higher than thevhen the user, for example, walks with the device in hand
thresholdrep. The vector space is reduced to representative causing low variance in acceleration.
beacons, and the similarity score is evaluated over this sub :
space. The certainty valwgranging from 0 taCax), which 3.3 Path Tracking
reachedax during entrance, decrements when the similar-
ity score is belowgm, and increments otherwise. A place
departure is declared whenreaches 0. The Tanimoto co-
efficient robustly detects adjacent places than previatls te
niques [11, 14] by exploiting signal strength changes and pe
nalizing the disappearance of a subset of representatae be
cons. Figure 3 depicts a simplified real-life example of sig-
nal changes in subsequently visited adjacent places gharin
a subset of strong beacons.

The scheme above robustly detects place visits when a
place has at least one beacon consistently detected during
stay. However, detecting places with weak beacon signals
still remains as a challenge. To cope with these places and
improve our place coverage, we adjust our two parameters
representative beacon thresholgh and window sizew, to
the radio environment. Thresholgy, is adaptively defined
by observing the highest response rate from the detected be

cons and subtractingsep. If the subtracted value is below the GPS module) over a sliding window (with sizg) ex-

Sizew i oubled to MElUde more scansand deal with the CodS threshold value 2 mis (average human iaking speed

sparse radio environment. We show the effects of these tech.S 1-3-1.5 m/s). The assumption here is that the user wil
niques in Section 4.3.3, slow down when approaching a place. Tracking is powered

Place Recognition. We apply the same Tanimoto coef- off when place entrance is determined. We do not apply

ficient used in detecting place visits to recognize reuvisite blacklisting Wi-Fi signatures based on past-experienGé [2

places. Once the entrance is determined, the coefficient istO predict when GPS positions are not available and is left

evaluated over the representative beacons of two fingeésprin as future Work.. However, the transition time be_tween _mdoor
in comparison. During the recognition phase, if the two fin- places are typically short and does not significantly impact
gerprints have a coefficient higher than a threshgigl then the overall battery life.

fingerprints are deemed similar. 4 Evaluation

3.2 Movement Detection We evaluate SenslLoc using three different data sets col-

An accelerometer monitors movements and finds oppor- lected from both real-life and scripted tours. First, we ase
tunities to save energy when the device is stationary. Desig data set collected by five persons following their normaddiv
goals of our movement detector are 1) low-power usage, 2)for a week to examine how the performance and energy cost
robust detection regardless of random orientations, and 3)are affected by different mobility patterns and environimen
low tolerance to movement. We duty cycle the accelerome- We illustrate that while the performance and cost indeed de-
ter 50% by setting the duration to 5 seconds and the periodpend on a user’s surroundings and travel patterns, SensLoc
to 10 seconds to reduce the energy consumed by the sensorobustly detects place visits better than previous apresc

Physical location of the device is periodically traced us-
ing available positioning systems while traveling between
places. We collect GPS fixes periodically for path track-
ing but other positioning systems or energy saving mecha-
nisms may be used [20, 25, 6, 15]. Sampling interval of
position fixes is a tunable parameter depending on the ap-
plication needs. As shown in Figure 2(a), in general, we
spend a non-negligible amount of time indoors where GPS
has low accuracy and travel long distances in comparatively
small amount of time. Well-timed path tracking allows us
0 save energy when the marginal utility of additional posi-
lon fixes is low, and aggressively localize when the user is
heading elsewhere.

SensLoc enables path tracking when its place detec-
tion algorithm declares place departure. SensLoc addition
ally saves unnecessary beacon scans when traveling at high
aspeeds. Wi-Fi scans are turned off, especially during long
drives when the average of the speed estimation (provided by
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and requires less energy overall. We also show that well-
timed path tracking allows us to collect GPS coordinates
only when they matter the most while at the same time saving
energy. Next, a data set collected by two persons over four
weeks is used to evaluate how well SensLoc learns the places
they visit and recognizes revisits over a month of usage. We - ik
also discuss the paths SensLoc found and the fluctuation in Remembered Places Discovered Places
energy consumption over the four weeks. Finally, we use a Figure 4. Remembered place (by users) anddiscovered places (by place
data set carefully designed to illustrate the strength of ou detection algorithms). More correct and interesting places indicate bet-
. . . L . ter performance, while the distribution of erroneous places allows us to
new place detection aIg_orlthm n dls_crlmlnatmg C|Ose'5_’ lo understand the strength and weakness of each techniqudnteresting
cated places and detecting places with weak beacon signalsplaces are usually brief visits that were mistakenly unrecded.
A step-by-step experiment is presented to show the effécts o
our improvements and parameters.

Interesting

Correct

Missed  [----------- R—— ‘
N\, Merged | Divided _/

False

We start with explaining how we collected the above data markets and stores near campus. Distance between places
P 9 varied from 1 to 10 minutes by a normal walk. Data collec-

sets, and the metrics we used to evaluate our place discover¥0rs were asked to stay at a place for at least 8 minutes and

performanpe. As a place typmaglly_does not have a umversal(farefully record the entrance and departure times.
shape or size, we depend on diaries kept by each user to ac

as the ground truth as others previously suggested. Then, we -
explain two previously proposed place learning algorithms 4.2 Evaluatlor.] MethOdS .

we implemented for comparison and delve into our results. . Place. To quantitatively evaluate the effectiveness of de-
We emphasize that none of the previous place learning tech-€cting place visits closer to how people normally perceive
niques experimentally studied their energy requirements a places, we use a set of meaningful and erroneous places de-

we are the first to benchmark them fined in [14] (Figure 4). We ask human patrticipants to log
' any place they visited and stayed for more than 5 minutes
4.1 Data Collection and use this as our ground triifhather than attempting to

We collected sensor data traces using HTC G1 mobile define a place geographically. PIace_s recorded by users are
phones, equipped with an integrated GPS, Wi-Fi, and ac- callt_edremembered placesand places discovered by place de-
celerometer. The phones were loaded with custom software!€ction algorithms are callediscovered places. Places that

are both recorded and discovered are further categorized as

configured to collect GPS, Wi-Fi, and accelerometer traces o : :
; ; correct, merged, anddivided. If two different places are dis-
every second. They also came with a voice/data plan and overed as a single place, the place is label | and

data collectors were encouraged to use them as they normall . I M X o
use their mobile phones g y sﬁ‘ a single place is divided into two or more, it is labeled as

Two individuals collected data for four weeks and five divided. Others that were both remembered and discovered
persons for a week as they went about their normal lives are classified asorrect. Recorded but not discovered places
Data was collected mainly within two city limits in differen are callednissed. Places that are not recorded but discovered

continents, while a couple of traces were also collected in are further classifiethteresting if the user claims it was m.is-
other cities during short trips. To collect ground truth, we takenly unrecorded, anidise otherwise. We further define

asked each data collector to keep a diary of the places the)})reqson andrecall as follows:
stayed during the data collection period along with the en- # Correct + # Interesting # Correct

try and exit times. After each data collection, we plotteel th Precision = e R e ——

GPS coordinates on a map and reviewed the results with theFinaIIy, the accuracy of detected entrance and departure

data collectors to help them make sure their log entries were imes are measured by the difference between the time deter-

as complete as possible. These diaries and maps provided . ; . .
. : ined by a place discovery technique and the time manually
the ground truth information about the actual places tha dat recorded by data collectors.

collector visited, and the times they entered and left those o . .
places. However, as GPS data was not available (or accu- Path. Obtaining ground truth of the travel distance is fun-
rate) in many indoor locations where people spent most of ?c‘;"::jegﬁg%ﬁrzailéegg&%tsiﬁ?r\(/jé?g cec\g}tgy Selgeévgl;i C\:\(l)hssr']
their time, we had limitations on achieving perfect ground ’ y y: €SP y

truth. At times, participants forgot to log short visits bet coIIec_tmg real-life data for multiple days_. Instead, we ag
time they actually entered or left a place gressively clean the GPS samples to estimate travel destanc

We additionally arranged a set of scripted tours of 50 vis- and use this data as our ground truth. Filtering GPS data is

. . o necessary as it is subject to errors up to several km (a.k.a.

g;é%ég ﬁ\'/fgeﬁgégsli%ee? Oﬁgﬁhggi? r?ggfg?r%nudswz:\%illlj o un_1ps) and outages indoors. We use three criteria to fllfce.r

time and visited them twice. Data collectors were incliedt o, GPS samples: 1) accuracy value above 30 m, 2) visi-
: : . ble satellite number less than four (a GPS receiver reqatres

select shortest paths, and the travel sequence includect dir

visits to closely located places such as neighboring stores  1pome js regarded as a single place and commercial places are

and rooms separated by a single floor. Places included vari-zssociated with stores. In office areas, small rooms witHiena

ous snack bars, stores, cafeterias, and lab rooms in 8-differ seconds of walking is considered as one place, while othatsall

ent buildings on campus, two outdoor plazas, and 5 different outside this determination are considered distinct places
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. ) . L ) following their normal life. SensLoc outperforms PlaceSese with more
Figure 5. HTC G1 Energy Profile. Two Agilent 34410A digital mutime- correct places, and fewemerged and false places.

ters are used to measure power consumption (through extermgower
supply) while running our software. The power data is downladable
from here: http://urban.cens.ucla.edu/resources/glpoer/.

+
Average Power Consumption
3

were applied. Stable depiand tolerance depthis equiv-

alent to our certainty valueso we also used three. A fixed
least four satellites for positioning [25]), and 3) speetiga  "epresentative beacon threshold was set3@8 suggested.
equal to 0. We empirically determined the threshold values.  Kang et al. designed a time and distance based cluster-
This process allows us to filter inaccurate GPS fixes, that oth ing algorithm to find significant locations and is used widely
erwise would have led to an overestimate of travel distance. by others using GPS trajectories to find significant location

Energy consumption. To evaluate energy consumption, 18, 26]. We used parameters for tinte5 minutes and
we use the average power to estimate the impact on bat-d=200 meters. GPS coordinates collected every 10 seconds

tery life. The latest mobile phones are typically loadechwit  Were used as input and GPS failures were regarded as a stay
a 1500mAh lithium-ion battery which has a7¥ nominal within the distance threshold. To improve its performance,
voltage. Thus, a phone powered by a 1500mAh battery canCPS samples with low accuracy value (abovenB@ere fil-

last 24 hours if it uses 2325mW (1500mAh 3.7V / 24h)  tered. _

on average. We estimate the average power requirement for-3.1  5-person short-duration study

each algorithm by using the energy profile of HTC G1, which The goal of this study is to _evaluate Sens'TOC over var-
we experimentally obtained (Figure 5), and the active-time i€d demography. Participants included an office worker, a

duration (combined with sampling rate) of each sensor. housewife, a pharmacist, and two graduate students in-diffe
. ent departments. Their age varied from mid-20s to mid-50s.
4.3 Experiment Results The participants collected their traces over a week folmi

We start with briefly explaining our parameter settings their normal routines, and kept a diary of the actual places
used for the experiments, and the two state-of-the-areplac they visited with entrance and departure times. To provide
learning algorithms, PlaceSense [14] and Kahgl. [13], anonymity, we assign the pseudonyms Adam, Beka, Charlie,
we implemented to evaluate our place detection algorithm. Dana, and Evan.

Sensitivity analysis of our parameters is presented atrtle e~ Typical traces contained ordinary work and home routines
of this section. during weekdays and visits to shopping areas for weekends.
SensLocuses a similarity thresholidn, to determine en- ~ Adam drives to work and visits various buildings located in

trance and departure. In our experimetgty, which can a walking distance during work hours. His office is in the
range from 0 to 1, was set to 0.7 as it was empirically found 7th floor of a 8-story building. He has the longest commute.
to be most effective. Step sizeikp), which definestherange  Beka also regularly drives to a private institute and spénds

of response rate used to select representative beacons, wésours a day during weekdays, but does not have many places
set to 02. Minimum threshold ), which sets the lower  near it other than a classroom which is located on the 4th
bound of the threshold, was set t&0We experimented with  floor of a 4-story building. Her traces instead includes fre-
two different Wi-Fi scanning intervals, 10 and 30 seconds, quent visits to several grocery stores and a couple of restau
and a window size of 30 and 60 seconds were used, respecrants. Charlie takes a bus to school and visits various lab
tively. The certainty value, which determines the number rooms and class rooms during the week. On the weekend,
of scan windows that are used to detect entrance and deparhe visits several stores. Dana walks to work in a dense ur-
ture, was set to three (and two when the scanning interval isban area and has the shortest commute distance. She works
30 seconds), as suggested by others using similar window-at the first floor of a 2-story building located near tall build
ing mechanisms. For movement detection, we duty-cycledings. She visits various lunch places near work and lives on
accelerometer 50%, and a conservative variance thresholahe 9th floor of a 14-story building. Evan commutes by a bus
value {/mov) 0.2 was used to find sleep opportunities. Paths and visits about three different places at work, and some-
were tracked with a 1/10 Hz GPS sampling rate. times stops by stores before arriving at home. The weekend

PlaceSensgsimilar to ours, relies on radio beacons to includes visits to superstores.
find places. Absence of newly-seen beacons triggers en- Place Detection. First, to evaluate our effectiveness in
trance detection and disappearance of every representativdetecting place visits, we compare SensLoc against previ-
beacon signals departure. For fair comparison, we matchedous techniques using the metrics presented in Section 4.2.
the parameter settings with SensLoc when they have samed-igure 6 illustrates the place detection performance of dif
interpretations. We used a Wi-Fi sampling interval of 10 sec ferent techniques on the 5-person 1-week data set. Overall,
onds, a window sizev of 30 seconds, and sliding windows SensLoc outperformed other place detection algorithnis wit
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Adam Beka Charlie Dana Evan All
SL10 SL30 PS KA|SL10 SL30 PS KA|SL10 SL30 PS KA|SL1I0 SL30 PS KA|SL10 SL30 PS KA|SLI0 SL30 PS KA

Cor. 47 45 40 12| 25 24 25 19| 40 36 41 18| 30 23 24 11| 34 33 31 19| 176 157 159 79
Int. 3 2 3 1 4 2 4 1 6 6 2 0 0 0 0 0 3 3 4 3 16 13 13 4
Mer. 0 0 6 37 0 0 0 5 0 0 2 24 0 2 6 20 0 0 5 16 0 2 19 102
Div. 2 1 2 0 1 2 1 2 2 4 0 1 3 4 1 0 2 3 1 0 10 17 7 3
Mis. 0 4 1 0 0 0 0 0 1 3 0 0 0 4 2 2 1 1 0 2 2 12 3 4
Fla. 1 2 5 10 0 0 3 0 1 1 9 7 1 0 3 2 0 0 5 14 3 3 25 33

Recall 096 090 0.82 0.24| 096 092 096 0.73]| 0.93 0.84 095 042| 091 0.70 0.73 0.33]| 0.92 0.89 0.84 051| 094 0.84 085 0.42
Precision 0.94 094 0.77 0.22| 097 093 0.88 0.74| 094 089 080 0.36| 088 0.79 071 033| 095 0.92 0.76 0.42| 094 0.89 0.77 0.38

Table 1. The distribution of discovered places by differentusers (SL10: SensLoc [Wi-Fi 10s], SL30: SensLoc [Wi-Fi 30sPS: PlaceSense [Wi-Fi 10s],
KA: Kang et al. [GPS 10s]). Overall, SensLoc outperformed others with thedrgest number ofcorrect places and the smallest number ofalse places.

the largest number oforrect places. PlaceSense merged Daily Avg. | Adam Beka  Charlie  Dana  Evan
places where more than one beacon is found strongly in both  Distance (m) | 28602.87 16679.40 18046.97 8951.18 13614.47
places, a known limitation [14]. For example, short trips ~_Coverage (%) 985 973 982 861 941

(typically within a few minutes of walking), such as moving  Taple 2. The total distance traveled by each participant ancpercent of
from one floor to another in the same building often shared the travel distance covered by SensLoc. On average, it onlysaed GPS
strong beaconsin both floors, and Consequenﬂy were merge(f)l’ about two hours a day and yet covered above 95% of the distece.
as a single place. In contrast, SensLoc’s detection alguorit
exploits changes in signal strengths, and was able to cor-
rectly distinguish many adjacentindoor places. SenslLsx al
significantly reduced false detections using its robusilaim

94% of the visited places and 94% of the found places were
actually visited. The improvement of SensLoc over Place-

. . o Sense was noticeable when users had many nearby places
ity measurement and improved filtering method. However, i tneir routine. For example, Adam and Evan frequently

PlaceSense had relatively mdaése places. It recognized @ jsjted two office rooms in different floors at work which
slow walk through an open area or a hallway as a place whenp|acesense failed to detect. Dana’s routine included fre-

at least one strong beacon was found consistently during they et visits to nearby stores which shared strong beacons.

walk as it only depends on the visibility of the beacon. However, when a user’s daily routine did not include many
Kanget al., based on GPS, resulted in significantly more nearby places, SensLoc performed similar to or slightly bet

merged places as many proximate places located in nearbyter than PlaceSense. For instance, Beka had a simple routine

buildings were identified as a single place. Intuitively, as visiting only a single place in each building, and the per-

GPS coordinates were not available indoors, adjacentplace formance difference was less significant. Overall, SensLoc

in closely located buildings could not be identified. Katg  detected fewer false places than PlaceSense, resulting in a

al. also resulted in the largest numbefae places. Similar consistently higher recall number for every participant.

to PlaceSense, slow walks in an open area or slow drives on  path Tracking. To evaluate how effectively SensLoc

a congested road were often identified as a place. Note, how+racks user’s travel paths, we consider two aspects oftrack

ever, that itdivided fewer places, by correctly finding more jng: the percentage of the total travel distance covered by
superstores or outdoor places where Wi-Fi APs were sparsean on-demand path tracking and the quality of the collected
Large stores were sometimes not covered by strong Wi-Fi position estimates.

APs and Wi-Fi beacon-based techniquiesded them into First we investigate the travel distance recorded by

several different places (onissed). However, as they typ-  gensloc compared to when the device continuously tracked
ically were located in a single-story building, high-qiali 5 yser’s location. We define coverage as the percentage of the
GPS coordinates were available in these places. Thus, a hygistance tracked by our path tracker and the total travel dis
brid approach adequately combining both techniques mayance tracked by continuous GPS tracking. Table 2 presents
improve the overall performance of the system. the daily average travel distance of each data collector and
It is interesting to note that decreasing SensLoc’s Wi-Fi the coverage of SensLoc. The average travel distance was
sampling rate did not significantly degrade the performance mostly influenced by a participant’'s commute distance. On
although it resulted in mormissed or divided places when  average, SenslLoc covered nearly 95% of the travel distance
beacon signals were sparse or weak. Increasing the samplingvhile the coverage slightly differed between data collexto
rate naturally improves performance, but comes with a cost  The coverage varied from 86.1% to 98.5% depending on
of energy consumption. Our result suggests that SensLoc cary yser’s daily travel pattern. A small delay before starting
provide accurate place detection with a 1/10 Hz Wi-Fi scan- path tracking when a user departs from a place was the main
ning rate, and can reduce its sampling rate to 1/30 Hz whencause of missing partial travel distances. As the absolute
the remaining energy-level of the device is low but still can |ength of the lost distances were similar between users, par
provide a reasonable level of performance. However, eventicipants with a longer average travel distance had a better
with a Wi-Fi sampling rate of 1/10 Hz, the overall energy coverage than others with a shorter average travel distance
consumption of SensLoc is significantly lower than others as For instance, Dana particularly traveled a shorter distasc
we show in the next section. she lives in a dense urban area and walks to work and had the
Table 1 shows the distribution of erroneously discovered lowest coverage. On the other hand, Adam with the longest
places by users. On average, SensLoc correctly recalledcommute distance received the highest coverage. Nonethe-
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Figure 7. The overall quality of the collected GPS coordinats measured
by the reported accuracy value and the number of visible satktes used. we Iogged the time each sensor was activated and used the

average energy consumption of each sensor we attained from
o ) power measurements of the HTC G1 phone (Figure 5). Here,
less, the coverage was not significantly compromised for all \ye present the case when SensLoc used a sampling inter-
data collectors (more than 95% for 4 participants, and 86.1%.4] of 10 seconds for both GPS and Wi-Fi. We also experi-
for one participant). Note that SensLoc, on average, ordy ha mented with higher Wi-Fi sampling rates to see if itimproves
to activate GPS for two hours a day (presented next), and yetihe place detection performance. However, more samples
could cover above 95% of the travel distance. did not necessarily improve the performance by introduc-
The overall qua“ty of the collected pOSItlon estimates are |ng more noisesy while Consuming Signiﬁcanﬂy more energy
measured by the reported accuracy value and the number ofrigure 5). On the other hand, higher GPS sampling rates
visible satellites used for estimating the position. Asj@s  ¢could improve path information (especially when traveling
a GPS receiver has stable signals from at least four segllit gt high speeds). but does not directly affect SensLoc’s per-
the estimation error of the position fix is known to be within - formance and is a tunable parameter that responds to appli-
15 meters [25]. First we investigated the average proligbili  cation needs and energy budgets. The duty cycle of the ac-
of high quality GPS position fixes among the collected ones. celerometer was 50% (over a 10 seconds period) to detect
We compared the positions collected from SensLoc againstmovements (as explained in Section 4.3), and provided suf-
the ones from periodic GPS sampling. Both used 1/10 Hz ficient information for detecting movements to trigger Wi-F
as their GPS sampling rate. Figure 7 demonstrates that wescans while saving substantial amount of energy.
can carefully acquire GPS coordinates only when it is most g e 9 presents the average time each sensor was ac-
likely to provide estimates with high accuracy by tracking e during a day’s operation by each participant. The error
GPS only when traveling between places. _bars show the maximum and minimum time each sensor was
_ Naturally, the places that participants spend most of their active for a day during the one week experiment. As sen-
time largely affected these results. Adam and Evan’s work ¢, .« ore powered on and off depending on the user's loca-

place hgt:] nlq ggnali cir severelly macdcurathe p03|;||on eSt('j'tion and movement, on-times were largely dependent on the
mates. Charlie’s work place was located at the top floor and eye| of activity during a particular day. For instance, whe

had positilons with relatively better accuracy values. Dg"i a user visited many places or traveled long distances, the ac
the experiment, GPS usually had more visible satellites andy e time of Wi-Fi and GPS increased, while the active time
provided fixes with good accuracy values when the floor is ¢ ye ccelerometer decreased. On the other hand, when a
near the rooftop, but degraded 5|gn|flcantly when multiple ;g mostly stayed at home, the accelerometer was o’n almost
floors are above. Dana showed lower quality as she mostly 3 the time, while others were barely used. The bars in Fig-
traveled between high-rise buildings in a dense urban area, .o 9 also i|’11plicitly reveal the relative number of placestea
Results from Beka’s data illustrate that the accuracy value

can be worse than 30 meters even when the GPS used more

than four visible satellites to estimate its position. Hess- S I T . GPS
room, which she frequented, had about four visible satsllit 20 %WiFi
Accel

on average, but the accuracy value of the position fixes was 16
often worse than 30 meters and had a lot of jumps. Figure 8 < b
illustrates the cumulative distribution of the quality oPS E 10
position fixes from a single day, showing that we can suspend
GPS tracking when itis unI|I_<er to provide good estlmat(?s. im e | Bl ﬁrE a

Energy Consumption. Finally, we analyze SensLoc’s Adam  Beka  Charlie  Dana  Evan
daily energy consumption by different users to understand rigyre 9. The average active time of each sensor used by SensL For
the energy cost of continuously detecting place visits and most the time, the accelerometer monitors the user's movemé while
tracking travel paths. To estimate the power consumption, GPS and Wi-Fi are used less frequently.

oN DO
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Figure 11. Percent correctly discovered new places from thieur weeks
Figure 10. Average daily power consumption across five diffent users. real-life data set.
The level of power consumption depended on the level of moky.

quently visits several office rooms separated by more than a
participant visited over the week experiment. Adam had the minute’s walking distance. Weekends involve visits to var-
largest number of place visits, which resulted in longer Wi- jous stores and markets. He also drove to friends living in
Fi active times and shorter accelerometer active timedewhi  different cities a couple of times during the data collettio

Beka exhibited the opposite by having the smallest number He visited 61 unique places and traveled 1003.08 km over 4
of place visits. The average on-times of each sensor over theyeeks.

five participants were 1.4 hours for GPS, 1.8 hours for Wi- Harry is Sing|e and drives to work but occasiona”y

Fi, and 22.3 hours for accelerometer. This also agrees withchooses to take buses. When he drives, he takes three dif-
the studies [16, 9] reporting that people spend nearly 90% of ferent routes to commute depending on the time of the day
their time indoors. to beat traffic. He visits several nearby buildings and out-
Using the results from above, we further estimated the door patios during work hours for meetings and lunch. He
overall energy used by SenslLoc (Figure 10). Additionally, also takes lessons during lunch time twice a week near work
we provide the estimated energy cost when path tracking isand frequently visits a coffee shop. Many of his places are
disabled and only place and movement detection is enablednear work or home. For weekends, he regularly visits out-
This eliminated the cost of tracking GPS positions as well door courts for sports, restaurants, gas stations, andmeou

as the savings achieved by turning off Wi-Fi when GPS re- of stores for groceries. He visited 49 unique places and trav
ported that the user is traveling at high speeds. We added thi eled 568.28 km for 4 weeks.

to compare against PlaceSense which does not track paths | earning New Places. First we evaluate how well
nor uses an accelerometer to save Wi-Fi scans. PlaceSensgensLoc discovered new places that our data collectors vis-
detects places with periodic Wi-Fi scans and its energy costited over a month as they went about their normal routines.
can be derived from the average energy consumed by samiere, we compare SensLoc with previous place learning al-
pling Wi-Fi scans every 10 seconds. Savings were dras-gorithms: PlaceSense and Kagigal. We labeled each visit
tic. SensLoc without path tracking used 32.8mW on average with a unique place name which we learned from the diaries
which is nearly 50% of what PlaceSense used (64.38mW). provided by our data collectors, and then found every first
The savings were from using a more energy-efficient duty visit to a unique place. A total of 110 first visits to a unique
cycled accelerometer instead of Wi-Fi scans when the de-place was used for this evaluation.

vice was immobile. When SensLoc also tracked paths by ' Figyre 11 illustrates the percentage of correctly detected
sampling GPS coordinates every 10 seconds only while trav-first visits for each algorithm. Both PlaceSense and SensLoc
eling between places, it still used only 54.8mW on average found new places well when the place was covered by at least
which is about 87% less than the energy consumed by col-gne steady Wi-Fi AP. SensLoc correctly found 10% more

lecting GPS every 10 seconds (392.2mW). first visits than PlaceSense by significantly reducirgged
) detections using its new place detection algorithm. SeasLo
4.3.2 2-person long-duration study particularly performed better than PlaceSense in separati

To better understand SensLoc’s expected performancetwo adjacent places sharing similar beacons. Kaingl.
and energy cost over a long-term use, we use a data set coltogically failed to find many indoor places in closely lo-
lected by two people over four weeks. We first investigate cated buildings, and correctly found only 44% of the places.
how well SensLoc discovers new places and recognizes themwhile the two beacon-based techniques outperformed the
when they are revisited. Then we discuss the paths that wereGPS-based technique overall, in some cases, GPS-based ap-
found and the fluctuation in energy consumption over the 28 proach worked better. For example, a couple of places in-
days of experiments. Before we start, we briefly explain our cluding middle school gyms, outdoor parks, and particular
two data collectors who provided the data set. superstores had sparse and weak Wi-Fi APs signals, and

Our data collectors are assigned the pseudonyms Georgavere challenging for beacon-based techniques to detel;t wel
and Harry. George is a parent of one child. Many of his resulting individed places. On the other hand, a GPS-
places involve driving his kid to school, restaurants, axxd e based algorithm worked better in correctly detecting these
tracurricular activities. He has two different work places places, having only 2% ddivided places (compared to 5%
where he goes for half of a week each. His wife usually of SensLoc and 7% of PlaceSense). Thus, to further improve
drops him off at work and he takes buses home. One of thethe place coverage, a hybrid approach using both radio sig-
two offices is located in a multiplex building where he fre- nals and positions to detect places may be considered.
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Figure 12. Percent correctly discovered and recognized fro the four
weeks real-life data set using two different recognition aorithms (cos:
cosine-based recognition, his: histogram-based recogiuh).

Recognizing Revisited Placeslo investigate the overall
performance of recognizing revisits, we used the first cor-
rectly discovered visit for learning, and used every other
visits for testing the recognition performance. We also
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Figure 14. Stack plots of diurnal power consumption over thefour
weeks. The power consumption of GPS fluctuates substantigltlepend-
ing on the level of mobility. High-peaks are due to long-disince drives

compared our new cosine-based place recognition scheméo different cities, and dips are from stay-at-home days.
against the previously proposed histogram-based scheme

[11]. For this evaluation, we used 358 revisits to 37 unique

places and excluded 73 places which only had one visit over

the four weeks (43 places from George and 30 places from
Harry). The percentage of correctly recognizing revissts i
the ratio of the algorithm correctly recognizes the place to
the total number of visits the data collector actually made.
Errors are further broken down terong (recognized as a
different place) andnissed.

Figure 12 illustrates the recognition performance of
SensLoc by the total time spent in the place during a visit
and by the total number of visits after the first visit. Ovkral
96% of the revisits were correctly recognized by using the

cosine-based recognition scheme, while 94% was correctly

recognized by the histogram-based scheme. The improve
ment was noticeable in correctly differentiating closedy |
cated places. Places that resulteevinng recognition were
recognized as another adjacent place sharing similar beaco
for both algorithmsMissed places included 2-3 short visits
to a room covered with no Wi-Fi APs and a couple of outdoor
places which were visited 4-6 times during the data collec-
tion. The radio environment of a particular place affected o
recognition performance more than the visit duration or the
visit frequency.

Paths Connecting PlacesSensLoc automatically traced

and parsed 293 paths over the four weeks (excluding 150

indoor travels) from the two data collectors’ daily routne
George traveled 148 times between 102 unique pairs of
places, while Harry traveled 145 times between 90 unique
pairs of places, creating 293 paths in total. Figure 13 shows
the distribution of the paths by their travel distance, ¢tav
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Figure 13. The distribution of recovered paths by their disnce length,
time duration, and unique pairs of places the path connected
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time duration, and the number of tracks between a unique
pair of places it connected. Most of the paths shorter than
1 km were travelled by walks and the longer ones were by
driving cars or taking other transportation such as buses.

Unlike other tracking schemes, SensLoc additionally pro-
vided new context information for these paths. By attaching
information about which places the path connects, SensLoc
allows us to filter and query paths based on where the path
started and ended. For example, if an application wants to
find the shortest path or the fastest route between “home”
and “my office”, it can simply query every recorded path
connecting the two places. As an experiment, we queried
every path between “home” and “my office” from Harry’s
data. We retrieved 30 pathsvhich we could distribute to
three different ranges of distances. There were six paths 6-
km long; four paths 8-9 km long; 20 paths 10-11 km long.
By simply looking at the travel distance, we could infer that
Harry has at least three different routes he takes to beat the
traffic depending on the time of the day.

Diurnal Energy Consumption Patterns. Finally, we in-
vestigate the daily power consumption of SensLoc over the
four weeks. By looking at the changes in the energy con-
sumption over multiple days (as illustrated in Figure 14),
we can notice how the user’s mobility over the day can sig-
nificantly affect SensLoc’s average power consumption for
that particular day. While the average power consumption of
Wi-Fi and accelerometer stayed around 6mW (2-4 hours a
day) and 26mW (20-22 hours a day), the average power con-
sumption of GPS fluctuated significantly from a minimum of
4.5mW (15 minutes a day) to a maximum of 76.8mW (4.7
hours a day). Note that Figure 14 is a stack plot that accu-
mulates the average power consumption of the accelerome-
ter, Wi-Fi, and GPS. The two peaks in George’s data illus-
trates the two long-distance travels he made to the friends
living in different cities. On the other hand, the days with
noticeably low GPS usage illustrates that the data coltecto
mostly stayed at home. Consequently, the accelerometer was
used more than other days. However, even for the worst day,

2This also implied that he often stopped by other places in be-
tween as he went to work more than 15 times.



SensLoc averaged about 110 he battery life can be rsep | Cor. Mis. Fal. Mer. Div. Precision Recall

significantly improved if we lower the GPS sampling rate as 0|3 1 1 10 ©0 076  0.78
o146 2 0 2 0 092 092
well (note that we collectgd GPS every 10 seconds). o2las 5 o0 o o 096 096
4.3.3 Controlled Experiments 03|48 2 0 0 O 096 0.96
Our place detection algorithm dynamically adjusts the 4aj4r 38 Lt 0 O 092 094
representative threshold,{,) and the window sizew) to Table 4. The distribution of errors with different representative beacon

adapt to the changing beacon environment. However, the al-threshold. Larger rgep includes more beacons in representative set.
gorithm still depends on a fixed similarity score threshold

(tsm) and a response rate step sizgef). In this section,
we investigate the sensitivity of the performance resalts t defined by observing the maximum response rate and sub-
the choice of these fixed parameters to arrive at sweet spotgracting a step sizeyep. Thus, a lagergep includes more

for these parameter values. We use a scripted-tours data sédeéacons in the representative beacon set and becomes more
as it provides more accurate ground truth over the real-life sensitive to changes. Table 4 shows that a larggyresults

data set, but the results are consistent in both data se¢s. Thin morefalse places. In contrast, a smallegep uses only
scripted-tours included visits to many indoor places agtjac ~ the strong beacons to evaluate the similarity and increases
to each other, such as rooms in different floors and storesthe number ofnerged places. Again, a middle ground value
cluttered in a commercial area near campus. We first exam-such as 0.2 led to an overall better performance.

ine the similarity score thresholtkf,) and the response rate

step sizefgep) by varying these parameters while fixing the w | Cor. Mis. Fal. Mer. Div. Precision Recall
rest of the parameters to values which resulted in the best 20 45 5 0 0 O 090 0.90
performance. Then, we illustrate how changing the window o ole 2 9 89 098 06
size (v) impacts the performance. Finally, the performance 50 46 2 1 2 0 080 092
of our final version is compared against other algorithms in- 60 |46 0 2 4 0 0.88 092

adaptive| 50 0 0 0 0 1.00  1.00

cluding PlaceSense and Kasagal. with different GPS and
Wi-Fi sampling ra_tes. We also |_”U5trate the V|5|t'.t|me bdu Table 5. The distribution of errors with different window si ze. Larger
ary accuracy of different techniques and sampling rates. w results in more merged places, but fewermissed places.

tsm | Cor. Mis. Fal. Mer. Div. Precision Recall A window sizew of a scan window combined with the
09| 43 7 0 o0 0 086 086 sampling rate defines the number of samples included in each
08|46 4 0 0 O 092 0.92 scan window. More samples in a scan window allows us
ols 2 2 2 9 098 0% to detect places where beacons are sparse and weak, but it
05|43 1 2 6 0 083 086 becomes less sensitive to changes. Table 5 shows that us-
. . . ing a largemnw reducesmissed places by additionally detect-
Table 3. The distribution of errors with different similari ty threshold. ing places with low-response-rate beacons, but also isesea

Larger threshold value tgy, results in fewer merged and false places, but

more missed places. merged andfalse places. Thus, we take an adaptive approach

by increasingw when the neighboring beacons are sparse.
We infer this when the adapted representative threshold is
below rpin, which is set to & for this experiment. This
adaptive approach eliminated timessed places and also sup-
pressed merging places where beacons are dense.

As shown in Table 3, a smaller Tanimoto similarity
thresholdtgy, resulted in fewermissed places and more
merged places as it becomes conservative in declaring a de-
parture. A largetsm increases the level of similarity it ex-
pects to determine if the signal fingerprints are from a sin-
gle place. It also increases the chances of missing places by

Algorithm | Cor. Mis. Fal. Mer. Div. Precision Recall

i i i SL(WiFil0s)| 50 0 0 0 0 1.00  1.00

falsleg/ gﬁerrmg stayls as travehls. Aall of th!|a||ssed plﬁcgs SL(WIFi309| 46 4 0 0 0 092 09
included commercial stores where data collectors had more  ps(wiritos)| 3¢ 5 3 11 0 064 068
movement within a place or received weak beacon signals. PS(WiFi30s)| 3 0 5 16 0 0.61  0.68
. ; i ; inilar KA(GPS10s)| 10 4 2 38 0 019 020

A smallertgm allows more fingerprints with lower similarity KAGPS309| © 7 3 3 0 018 o018

to be regarded as from a single place, and increases the num-
ber ofmerged places. Thus, a moderate value such as 0.7 is Table 6. The distribution of errors by different algorithms with varying
preferable for reducingissed andmerged places. sample rate (SL: SensLoc, PS: PlaceSense, KA: Kargjal.)

When measuring the similarity of two fingerprints for de- ) .
tecting an entrance, every beacon found in both fingerprints 10 Summarize, we use the settings that lead to the best
is used. However, to avoid intermittent beacons falsety tri  Place detection performance and compare each algorithm.
gering a departure, a subset of strong beacons are used t5or SensLoc, our (esults suggestthata merrqte value works
evaluate the similarity between two fingerprints when de- best for the two fixed parameters, and adjusting other pa-
tecting a departure. SensLoc selects strong beacons based@meters based on the changing radio environment further

on their response rate, and the thresholgh) is adaptively improves perf(_)rmance results. Ta}ble 6 compares the per-
formance of different place detection algorithms on traces

3A 1500mAh battery can last 24 hours when, on average, 231.25from scripted tours. The parameter settings were same as
mW is used. described in Section 4.3. PlaceSemgiesed places where
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Figure 15. Time boundary accuracy. For 80% of the visits deteted by Figure 16. Detection Delay. For 80% of the visits detected b§ensLoc,
SensLoc, time offset of departure times are within 0 to 30 sends, and detection delay of departure times are within 30 to 60 secorg] and en-
entrance times are within -60 to 60 seconds. trance times are within -30 to 120 seconds.

beacons were weak amierged places where places shared were relatively delayed, possibly due to the delayed depar-
similar beacons. In contrast, SensLoc was better in detgcti  ture time of the previously visited place. Decreasing the
adjacent places sharing more than one strong beacon. Natsampling rate had insignificantimpact on the accuracy of the

urally, Kanget al. based on GPS resulted in marerged inferred entrance and departure time for all algorithms.
places, but worked reasonably well in finding building-leve  Lastly, we investigate the actual time it takes before the
significant locations, unless the buildings are closelgted.  algorithm can declare an entrance or a departure. As place

Reducing the sampling rate to 1/30 Hz from 1/10 Hz gener- |earning algorithms use several scan windows before declar
ally degraded the performance for all algorithms, butngtsi  ing an entrance or a departure, the detection time and the
nificantly. The certainty valuegax) combined with the sam-  inferred time-boundary differs. We define the time it takes
pling rate determines the minimum time delay before declar- to detect events as detection delay (offset from grount)rut
ing entries and exits. We empirically found thagy = 3 for and illustrate each algorithm’s detection delay in Figuse 1
1/10 Hz andtmax = 2 for 1/30 Hz work best. SensLoc resulted in lower detection delay for both entrance
Finally, we evaluate the time-boundary accuracy of the and departure compared to others. The departure detection
detected places by their entrance and departure time. We firsdelay for SensLoc was 30-60 seconds for 80% of the vis-
compare the accuracy of different algorithms, and then dis- its when using a sampling rate of 10 seconds, while Place-
cuss how the sampling rate affects the accuracy. To measuresense exhibited 90-210 seconds delays. Similarly, SensLoc
the time-boundary accuracy of places found by algorithms, detected entrance within 120 seconds for 90% of the visits
we measure the time offset of entrance and departure timesyhile PlaceSense took the same amount of time for about
from the ground truth (logged in diaries). We excludesed 70% of the visits. By using a robust similarity measure-
places and use only the beginnings and ends that matchegnent method to detect places, SensLoc improves the time-
with the ground truth fodivided andmerged places. We dis-  boundary accuracy and detection delay as well.
cuss the departure time first as it may affect a subsequently
visited place’s entrance time. Many of the places visited du 2 Related Work
ing the scripted tours were within a couple of minutes walk-  Semantic Place Learning.Place learning algorithms at-
ing distance and could affect each other’s time boundaries. tempt to find meaningful places from raw sensor data. We
As shown in Figure 15(a), the time offset of departure can broadly classify them into two categories: geometry-
time for SensLoc was within 0-30 seconds for about 80% of based and fingerprint-based approaches.
the visits. For 10% of the visits, the inferred departurestim Geometry-based algorithms identify places as a set of co-
was 0-60 seconds earlier than the actual departure time, andrdinates within circles or polygons. These algorithms use
10% had 30-120 seconds offset. PlaceSense generally hageriodically collected position estimates to detect ari-ind
more delays in the found departure times as it has to losevidual’s stay in a certain region and infer significant pkgce
every representative beacon before it declares a departureEssentially, the achievable granularitgg, room-level or
About 80% of the visits had 0-120 seconds offset in their building-level) depends on the underneath positioning sys
detected departure time. Kamgal. had even larger off-  tem they rely on. For example, Marmaseal. defines a
sets as the places it found were generally coarser thangplaceplace as a Euclidian ball with a fixed radius where GPS is
found by beacon-based algorithms. Figure 15(b) illussrate unavailable [23]. Ashbrookt al. and Toyameet al. pro-
the accuracy of the found entrance times. The time offset of posed using a variant of the k-means clustering algorithm to
entrance times for SensLoc was within -60 to 60 seconds fortune the clusters found by GPS signal losses [2, 31]. Liao
about 80% of the visits, while PlaceSense’s entrance timeset al. iteratively infer activities and significant places from
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GPS traces using a hierarchical CRF model, and the modeltion between consecutive location readings. A-Loc is based
is trained by fitting parameters using a labeled trace [19]. on a selection algorithm that determines the most energy-
Nurmi et al. proposed a Dirichlet process clustering algo- efficient localization technique to meet the accuracy negui
rithm that does not require parameter fitting, but may take ment (which is also assumed to change as a user moves to
hundreds of thousands of iterations to converge dependingdifferent areas) [20]. It predicts future user locationngsi
onthe trace [24]. Kangt al. [13] improved an approach pro- a model based on HMM, updates the location and sensor
posed by Hariharagt al. [10] that finds places by defining error models, and selects the sensor with minimum energy
temporal and spatial stay thresholds without depending onuse. EnTracked focuses on outdoor pedestrian tracking and
GPS disappearances. Unlike others requiring the entice tra assumes that applications specify their distance-ernor li
for offline segmentation and inference, their heuristioalg its [15]. It detects movements using an accelerometer to
rithm based on distance and time can be used in real-timeturn off GPS, and uses speed estimates provided by GPS
and is computationally less expensive. These approachedo predict movement and schedule the next location sample.
are found to be fairly effective at discovering buildingdéév ~ RAPS uses a collection of techniques to adaptively sample
places or outdoor places, but suffers from differentiating GPS coordinates [25]. It duty cycles an accelerometer to de-
door places at dense urban area besides the energy consumeect movement, uses space-time history of user movements
by continuously estimating positions. to predict mobility, and checks a GPS-available probapbilit
Ambient fingerprints have been successfully used for de- table based on the surrounding cell towers. It also allows
tecting semantic places with finer granularity than thaheft  users to share positions with neighboring users througa-Blu
geometry-based approaches. This includes RF fingerprintstooth. Zhuanget al. also uses an accelerometer to detect
(e.g., Wi-Fi, Bluetooth, and cell tower), surrounding color, movements, schedules two different localization techesgu
texture, and sound pattern. Among these, RF fingerprintsand adjusts sampling rates based on the battery-level [34].
have been most popular in discerning subtle differences be-EEMSS employs low power sensors to detect user states and
tween semantically different places. The key benefit over context, and triggers high power sensors only when neces-
other ambient signatures is that the RF beacons can be monisary [32]. While doing this, they duty cycle each sensor
tored regardless of placement of a mobile device. For exam-to further save energy. More recently, Constandaatiat.
ple, currently connected cell towers were used to learn andcombine map information and dead reckoning based on low
recognize places [17, 7, 33] albeit with coarse granularity power sensors to reduce GPS samplings [5]. These tech-
and at the cost of complex implementation [29]. Beacon- niques can be used to track paths for SensLoc, although they
Print rely on new beacons to infer place visits [11]. Place- may be needed for about 10% of the time on average.
Sense further improved its place discovery accuracy by us- ]
ing separate mechanisms to detect entrances and departurds Conclusion and Future Work

[14]. These algorithms are compatible with cell towers, but  Our results show that SensLoc can both semantically and
Wi-Fi APs provided more robust and finer grained informa- energy-efficiently provide location context to applicatidy
tion about semantic places. Other ambient signatures suchysing a combination of acceleration, Wi-Fi, and GPS sen-
as sound, light, color, and texture information can be used t sors to find semantic places, detect user movements, and
further discern subtle differences between adjacentimesit  track travel paths. Place visits and path travels are iaterr
SurroundSense uses ambient sound, light, color, user motio from raw sensor data, which is energy-efficiently achieved
in a place in addition to RF signals [3]. Besides its abildly t by leveraging our tendency to spend about 90% of the time
discriminate adjacent places that share similar radiom®co  indoors and 10% in a vehicle or at outdoors. Precision and
it can also cluster semantically closer placeg.(remotely  recall of detecting semantic places are both improved com-
located franchised stores sharing similar looks). Soung&e  pared to the previous state-of-the-art PlaceSense agproac
uses acoustic signatures to recognize activities and place by additionally exploiting signal strength changes of the s
[21]. However, these approaches are not appropriate for derounding beacons and adapting parameters to the neighbor-
tecting visit boundaries and require careful placement of a ing beacon density. The accuracy gains are particularly no-
mobile phone such that the sensors can measure these signéiceable when a user’s routine includes back-to-backsvisit
tures unobstructed. to nearby indoor place®.g., rooms on different floors) that
Energy-efficient Path Tracking. To make continuouslo-  shares even a single strong beacon. SensLoc’s enhanced
calization practical, several research efforts have deitit place detection algorithm also improves the detected place
energy-efficient location tracking focused on preservimg t  entrance and departure times by over 2.3 times the precision
distance-error bounds requested by applications. Three re of previous approaches. However, at some places where bea-
curring methods are 1) intermixing a set of positioning sys- con signals are weak and unstable, PlaceSense, which only
tems with varying accuracy and energy requirements, 2) pre-considers the presence of beacons, detects places more ro-
dicting mobility to schedule the next location estimated an  bustly. Path tracking is only initiated when a user is tranggl
3) using low power sensors to find sleep opportunities. between places, which allows us to achieve highly efficient
EnLoc switches between localization techniques by find- duty cycling of positioning system.§., GPS 8.3% active
ing the optimal localization accuracy for a given energy-bud time), and still covers 95% of the travel distance. This not
get using dynamic programing [6]. It uses human mobil- only saves energy but also boosts the overall quality of the
ity patterns to further improve its performance by predict- collected position estimates. Lastly, the average powef co
ing user mobility rather than using the last known loca- sumption of SensLoc is about 54.8 mW, which is 6.2 times
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less than that of collecting GPS periodically. On average, a
celerometer, Wi-Fi, and GPS are activated for about 20-22,
2-4, and 1-2 hours everyday, respectively.

We believe SensLoc has solved some of the major prac-
ticality issues with continuous location tracking, andisH
trated that an approach with a holistic and semantic point of
view may provide a realistic solution for many applications
Our results also suggest that there is still more room for im-
provementto push the place detection performance even fur-
ther. Adaptive approaches intermixing several place lagrn  [17]
techniques based on the radio environment and the applica-
tion needs may allow us to cover the remaining 5% places [1g]
that are challenging. Using more energy-efficient sensors
may also reduce the energy cost. For example, cell towerg;
information, which almost comes for free, can replace Wi-
Fi scans, if mobile service providers become less reluctant
in disclosing cell tower information and more platforms{pro
vide common APIs to scan every neighboring cell towers.
However, we think most research should focus on develop-
ing an application stack with a well-defined set of APIs, and [21]
create a feedback loop with the users that could tell us vghat i
really important to address. The outcome of these field stud-
ies will expose application demands and provide nuances to
tune the system for particular uses or situations.
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