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Abstract
Continuously understanding a user’s location context in

colloquial terms and the paths that connect the locations un-
locks many opportunities for emerging applications. While
extensive research effort has been made on efficiently track-
ing a user’s raw coordinates, few attempts have been made
to efficiently provide everyday contextual information about
these locations as places and paths. We introduce SensLoc,
a practical location service to provide such contextual infor-
mation, abstracting location as place visits and path travels
from sensor signals. SensLoc comprises of a robust place de-
tection algorithm, a sensitive movement detector, and an on-
demand path tracker. Based on a user’s mobility, SensLoc
proactively controls active cycle of a GPS receiver, a Wi-
Fi scanner, and an accelerometer. Pilot studies show that
SensLoc can correctly detect 94% of the place visits, track
95% of the total travel distance, and still only consume 13%
of energy than algorithms that periodically collect coordi-
nates to provide the same information.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:

Real-time and embedded systems

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Semantic Location Context, Energy-efficient Tracking.

1 Introduction
As mobile devices have become capable of locating them-

selves almost all the time, a variety of mobile applications
have emerged that seek to continuously track a user’s loca-
tion context. For instance, geo-reminders allow us to set
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and receive a to-do list whenever we enter or leave a par-
ticular place [22, 27]. Social applications plan to provide
services for seamlessly sharing whereabouts, querying users
that are presently located at an art gallery, and inferring
hotspots by the frequency of physical visits by users [8, 7].
Tracks generated by humans also provide useful information
for map building, traffic estimation, and ride sharing [30, 1].
Moreover, automatically detected visit and travel behaviors
can help studies of human spatial and temporal behavior,
and support research for urban planning, sustainability, epi-
demics, and health care [9, 28]. Interestingly, all these ap-
plications can benefit from continuously understanding and
keeping track of location as people normally do: places and
paths. By automatically learning the places that one visits
throughout one’s daily life, noticing when one enters and
leaves these places, and remembering paths one travels be-
tween them, we can unleash many interesting applications.

An obvious choice for tracking a user’s location context
today is to periodically collect coordinates from available
positioning systems (e.g., GPS) and directly provide them
to applications. Places of interest are manually defined by
drawing a circle or a polygon ahead of time, and paths are
parsed from day-long traces by post-processing algorithms,
if not done manually. However, we argue that such schemes
fail in discovering many interesting indoor places, struggle
to scale, and consume unnecessary energy. Most of the
places we go and stay are indoors, and even a single build-
ing (or adjacent ones) can contain multiple places especially
in dense urban environments. Unfortunately, this is where
current positioning systems suffer in providing accurate po-
sition fixes. Manually delineating and labeling places from
scratch one by one also does not scale and can omit inter-
esting places that we are less conscious of having visited.
Moreover, continuously tracking a person’s location comes
with a significant energy cost, discouraging potential users.
Current track-based applications either cope with a reduced
sampling rate with lower fidelity or depend on users to man-
ually start and stop tracking. Recently, many research efforts
have focused on efficiently tracking user’s coordinates while
retaining the distance-error bound specified by applications
[20, 25, 6, 15]. While these algorithms can provide location
traces in an energy efficient way, they do not provide every-
day location context in a semantically meaningful way.

In this paper, we present SensLoc, a system that provides
user’s location context as places and paths while reducing
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its impact on the device’s battery life. We show that inter-
preting location closer to our semantics not only provides a
richer set of context information, but also plays a key role in
designing an energy-efficient location tracking mechanism.
Studies have shown that people spend approximately 89%
of the time indoors and 5% in a vehicle with the remaining
6% spent at outdoors [16]. Thus, GPS, which provides ac-
curate position fixes when it has a clear view of sky, may
only be needed for about 10% of the time while other adap-
tive and more energy-efficient mechanisms should be used
to detect semantic indoor places for the majority of the time.
The key challenges we face to provide such service are 1)
accurately detecting places closer to our semantics, 2) auto-
matically parsing travel paths from day-long location traces,
and 3) minimizing energy consumption.

We overcome these challenges by designing a robust
place detection algorithm, a sensitive movement detector,
and an on-demand path tracker. A place detection algorithm
attempts to automatically find places (colloquial representa-
tions of locations such as “my office’ or “5th floor cafe”)
that carries a semantic meaning to an individual user. Se-
mantic places are directly inferred from pervasive radio sig-
nals by periodically scanning neighboring beacons. To re-
duce energy consumed during a stay at a place, scans are
suspended while a movement detector detects no movement
from a more energy-efficient inertial sensor. A path is de-
fined as a set of time series coordinates that interconnects
places. Paths are tracked by acquiring periodic position fixes
from position systems only when traveling between places.

Our main contributions are as follows: We 1) propose a
new abstraction of continuous location: places and paths, 2)
present a framework that provides location context as places
and paths using less energy, and 3) provide quantitative stud-
ies illustrating expected performance and energy cost when
used everyday.

To evaluate our framework, we gathered three different
data sets from both real-life and scripted-tours. Five individ-
uals collected data for a week and two people for four weeks
as they went about their normal lives. A scripted-tour data
set comprised of 50 visits to 25 different places people go
often near a campus. Each volunteer also kept a written di-
ary of places they visited with enter and exit times. Using
these data sets, we evaluate SensLoc’s effectiveness in de-
tecting place visits, tracking travel paths, and its overall en-
ergy consumption during a daily operation. While the perfor-
mance and cost indeed depends on a user’s surrounding and
travel patterns, we show that SensLoc consistently outper-
forms previous place learning techniques, promptly tracks
paths, and saves significant energy.

2 System Overview
We first describe a high level usage scenario of the sys-

tem, and then present the internal details. As SensLoc runs
in the background of the mobile device, places are gradu-
ally learned as a user visits them and spends a substantial
amount of time. A new place is learned by saving its place
signature whenever a visit to an unknown place is detected,
and sometime later in the day asking the user to confirm and
tag a name, such as “home”, “Fred’s office”, or “Organic

Figure 1. System Architecture

foods @westwood”. A user can recall the place by look-
ing at the visit time, presented as enter and leave time, and
the associated geographic coordinate, plotted on a map, pro-
vided as a hint. Revisited places are recognized using pre-
viously saved place signatures. Entrance to and departure
from selected places are notified to applications requesting
the place detection service. When a user leaves a place,
path tracking (if enabled) is initiated until the user arrives
at another place. Any positioning system available on the
device can be used including GPS or systems supported by
energy-efficient mechanisms [20, 25, 6, 15] to track paths.
If path recording is requested, paths are saved, and provided
to various applications requesting the service. Unrecorded
path tracking can also provide real-time current positionsto
navigation and location-based search applications with min-
imum delay by periodically updating the user’s current po-
sition. This is also when real-time positions are most likely
used (e.g., when I’m mobile), and quick responses are most
appreciated (e.g., when I’m lost).

Figure 1 presents the overall architecture of SensLoc. The
system consists of three main building blocks to provide its
service while reducing its energy requirements: place detec-
tor, movement detector, and path tracker. In the next sec-
tion, we describe a particular set of algorithms using GPS,
Wi-Fi, and accelerometer that implement these architectural
elements, but other algorithms can be deployed. The place
detector regularly scans neighboring radio beacons to detect
place visits when the radio environment stabilizes indicating
an entrance. Once an entrance is determined, the place de-
tector consults with the place database to recognize the place
and triggers the movement detector to find opportunities to
sleep. If no movement is detected, the movement detector
signals the place detector to sleep, and awakens it when a
movement is detected again. When the place detector senses
that the surrounding radio environment is changing, it de-
clares a place departure, saves the visit history, turns offthe
movement detector, and powers on the path tracker. Path
tracking is initiated and records the path to the path database
(if enabled) until the next place visit. Path tracker can also
hint the place detector to sleep when the user is traveling
at high speeds, and unlikely to approach a place anytime
soon. We use Wi-Fi access points (APs) to sense places,
accelerometer to detect movements, and GPS to track paths.
We describe the details next.
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(a) Sensor data

(b) Corresponding Location Trace

Figure 2. Location and sensor traces from a single day following nor-
mal routines. The icons on the top row illustrate the ground truth. Each
dot in the Wi-Fi scatter plot is a beacon found from a scan. Accelera-
tion magnitude variance is computed over 10 second window with 50%
duty-cycling. Accuracy value is reported from the GPS module.

3 SensLoc Algorithms
The biggest challenge facing SensLoc is accurately iden-

tifying place visits and path travels while minimizing energy
usage. We use a novel place visit inference technique, take
a hybrid approach to save energy, and track paths only when
traveling between places.

3.1 Place Detection
Detecting place visits involves two steps: sensing a stable

radio environment that indicates an entrance to a place and
detecting significant changes signaling a departure. Intrinsic
noises in the signals caused by multi-path, signal fading, and
interference make such task challenging. Even when stay-
ing at a place, beacons may be seen intermittently, particu-
larly when transiently traversing edge of certain APs. Place-
ment of the device near a human body also causes interfer-
ence and irregular beacon losses. Beacons are also typically
not confined to a single place. Yet, humans are creatures
of habit constraining their movement in certain areas (even
at a place). As depicted in Figure 2(a), surrounding radio
signals can well approximate human location interpretation,
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Figure 3. Changes in signal strength when a user visited two places in
different floors. Relying on the absence of every representative beacons
to detect departure fails in detecting direct visits to adjacent places.

and others have shown that a well defined set of beacons can
overcome the noisy radio environment [11, 14].

Our place detection algorithm is built upon previously
proposed ideas. However, we improve its ability to discrim-
inate close places governed by common beacons and reduce
false place detections by exploiting signal strength changes
and adapting to diverse beacon densities. Like other ap-
proaches, a scan window, as opposed to a single scan, is used
to tolerate noisy radio signals and beacon losses. A window
sizew defines the number of scans used for each operation.
Sliding windows are used to provide more accurate detection
as opposed to non-overlapping windows. Locally adminis-
tered APs (e.g., local networks created by laptops or mobile
phones) are pre-filtered to rely on static APs. These can be
distinguished by examining the second least significant bitof
the most significant byte of the mac address. This simple fil-
tering helps significantly in reducing false place detections.

Similar radio environment is determined using the Tan-
imoto coefficient [12], which is widely used for measuring
similarity between two fingerprintsF1 andF2. The Tanimoto
similarity penalizes a small number of shared entries (bea-
cons) more than the cosine similarity and is defined as:

T (F1,F2) =
F1 ·F2

||F1||
2+ ||F2||

2−F1 ·F2

Input Wi-Fi scans are transformed into vector space so that
the Tanimoto coefficient can be used. The attribute vectors
are the signal strength vectors of the fingerprints. Our algo-
rithm uses a group of scans (determined by a window size
w) to infer fingerprints, defined by the list of beacons, com-
bined with their signal strength and response rate. Response
rate is the ratio of the detection count and the total number
of scans for each beacon, and has been found to be more ro-
bust in predicting distance than signal strength [4]. The mean
of the signal strength is calculated ignoring zero values and
over the selected group of scans; Zeros are assigned when
the beacons are not detected. Both entrance and departure
detection use this similarity measure, but the scope of the in-
cluded scans and beacons in each figerprint differs slightly.

Entrance Detection. Continuously seen similar scan
windows imply potential entrance to a place. Similar to
other prior works, we determine an entrance whencmax con-
secutive scan windows pass the similarity test. We differ
from these works by using the Tanimoto coefficient to mea-
sure similarity. To start an examination of a potential stay
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at a place, the current scan window is saved and compared
against the following scan window. A certainty valuec is
increased when the Tanimoto coefficient of the previous and
current scan window is above thresholdtsim. Otherwise, we
resetc to 0, and clear the fingerprint. Scan windows deter-
mined to be similar are merged for comparison against the
next scan window. A place entry is declared whenc reaches
cmax. As yet not enough statistics of a place are gathered for
more insightful decisions; therefore, we take a conservative
approach by including all beacons detected in two finger-
prints when computing the coefficient.

Departure Detection. Scan windows that are dissimilar
from the current place’s fingerprint indicate that the RF envi-
ronment is changing and implies leaving a place. Accumu-
lated beacon statistics during the stay are used to make more
careful examinations in detecting departures. To suppressin-
fluences of infrequent beacons, only a subset of beacons are
used to measure similarity. After entering a place, we select
representative beacons with a response rate higher than the
thresholdrrep. The vector space is reduced to representative
beacons, and the similarity score is evaluated over this sub-
space. The certainty valuec (ranging from 0 tocmax), which
reachedcmax during entrance, decrements when the similar-
ity score is belowtsim, and increments otherwise. A place
departure is declared whenc reaches 0. The Tanimoto co-
efficient robustly detects adjacent places than previous tech-
niques [11, 14] by exploiting signal strength changes and pe-
nalizing the disappearance of a subset of representative bea-
cons. Figure 3 depicts a simplified real-life example of sig-
nal changes in subsequently visited adjacent places sharing
a subset of strong beacons.

The scheme above robustly detects place visits when a
place has at least one beacon consistently detected during a
stay. However, detecting places with weak beacon signals
still remains as a challenge. To cope with these places and
improve our place coverage, we adjust our two parameters,
representative beacon thresholdrrep and window sizew, to
the radio environment. Thresholdrrep is adaptively defined
by observing the highest response rate from the detected bea-
cons and subtractingrstep. If the subtracted value is below
minimum thresholdrmin, rmin is used asrrep, and window
size w is doubled to include more scans and deal with the
sparse radio environment. We show the effects of these tech-
niques in Section 4.3.3.

Place Recognition.We apply the same Tanimoto coef-
ficient used in detecting place visits to recognize revisited
places. Once the entrance is determined, the coefficient is
evaluated over the representative beacons of two fingerprints
in comparison. During the recognition phase, if the two fin-
gerprints have a coefficient higher than a thresholdtsim, then
fingerprints are deemed similar.
3.2 Movement Detection

An accelerometer monitors movements and finds oppor-
tunities to save energy when the device is stationary. Design
goals of our movement detector are 1) low-power usage, 2)
robust detection regardless of random orientations, and 3)
low tolerance to movement. We duty cycle the accelerome-
ter 50% by setting the duration to 5 seconds and the period
to 10 seconds to reduce the energy consumed by the sensor.

Acceleration magnitude is computed over all three axis to
tolerate random orientations of the device. To detect move-
ment, we compute the variance of the magnitude over a slid-
ing window with window sizewacc.

We conservatively find sleep opportunities to preserve ac-
curacy, as a couple of more Wi-Fi scans are not extremely
expensive. Our main targets are long-duration sleep oppor-
tunities when the device is left alone. The accelerometer is
turned on when a user enters a place and stays for more than
five minutes. We avoid immediately checking sleep opportu-
nities to provide enough time to accumulate beacon statistics
of the place. When thec value used for detecting place visits
is atcmax, indicating a steady stay at a place, the variance of
the magnitude is compared against a conservative threshold
vmov. If the variance is below the threshold, beacon scans
are postponed until the variance is over the threshold again.
Whenever a movement is detected, we reactivate the scans
for at least 5 minutes to prevent missing place departures
when the user, for example, walks with the device in hand
causing low variance in acceleration.

3.3 Path Tracking
Physical location of the device is periodically traced us-

ing available positioning systems while traveling between
places. We collect GPS fixes periodically for path track-
ing but other positioning systems or energy saving mecha-
nisms may be used [20, 25, 6, 15]. Sampling interval of
position fixes is a tunable parameter depending on the ap-
plication needs. As shown in Figure 2(a), in general, we
spend a non-negligible amount of time indoors where GPS
has low accuracy and travel long distances in comparatively
small amount of time. Well-timed path tracking allows us
to save energy when the marginal utility of additional posi-
tion fixes is low, and aggressively localize when the user is
heading elsewhere.

SensLoc enables path tracking when its place detec-
tion algorithm declares place departure. SensLoc addition-
ally saves unnecessary beacon scans when traveling at high
speeds. Wi-Fi scans are turned off, especially during long
drives when the average of the speed estimation (provided by
the GPS module) over a sliding window (with sizewgps) ex-
ceeds threshold value 2 m/s (average human walking speed
is 1.3-1.5 m/s). The assumption here is that the user will
slow down when approaching a place. Tracking is powered
off when place entrance is determined. We do not apply
blacklisting Wi-Fi signatures based on past-experience [20]
to predict when GPS positions are not available and is left
as future work. However, the transition time between indoor
places are typically short and does not significantly impact
the overall battery life.

4 Evaluation
We evaluate SensLoc using three different data sets col-

lected from both real-life and scripted tours. First, we usea
data set collected by five persons following their normal lives
for a week to examine how the performance and energy cost
are affected by different mobility patterns and environment.
We illustrate that while the performance and cost indeed de-
pend on a user’s surroundings and travel patterns, SensLoc
robustly detects place visits better than previous approaches
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and requires less energy overall. We also show that well-
timed path tracking allows us to collect GPS coordinates
only when they matter the most while at the same time saving
energy. Next, a data set collected by two persons over four
weeks is used to evaluate how well SensLoc learns the places
they visit and recognizes revisits over a month of usage. We
also discuss the paths SensLoc found and the fluctuation in
energy consumption over the four weeks. Finally, we use a
data set carefully designed to illustrate the strength of our
new place detection algorithm in discriminating closely lo-
cated places and detecting places with weak beacon signals.
A step-by-step experiment is presented to show the effects of
our improvements and parameters.

We start with explaining how we collected the above data
sets, and the metrics we used to evaluate our place discovery
performance. As a place typically does not have a universal
shape or size, we depend on diaries kept by each user to act
as the ground truth as others previously suggested. Then, we
explain two previously proposed place learning algorithms
we implemented for comparison and delve into our results.
We emphasize that none of the previous place learning tech-
niques experimentally studied their energy requirements and
we are the first to benchmark them.

4.1 Data Collection
We collected sensor data traces using HTC G1 mobile

phones, equipped with an integrated GPS, Wi-Fi, and ac-
celerometer. The phones were loaded with custom software
configured to collect GPS, Wi-Fi, and accelerometer traces
every second. They also came with a voice/data plan and
data collectors were encouraged to use them as they normally
use their mobile phones.

Two individuals collected data for four weeks and five
persons for a week as they went about their normal lives.
Data was collected mainly within two city limits in different
continents, while a couple of traces were also collected in
other cities during short trips. To collect ground truth, we
asked each data collector to keep a diary of the places they
stayed during the data collection period along with the en-
try and exit times. After each data collection, we plotted the
GPS coordinates on a map and reviewed the results with the
data collectors to help them make sure their log entries were
as complete as possible. These diaries and maps provided
the ground truth information about the actual places the data
collector visited, and the times they entered and left those
places. However, as GPS data was not available (or accu-
rate) in many indoor locations where people spent most of
their time, we had limitations on achieving perfect ground
truth. At times, participants forgot to log short visits or the
time they actually entered or left a place.

We additionally arranged a set of scripted tours of 50 vis-
its to 25 different places. Each data collector individually
selected five places they often go to near campus ahead of
time and visited them twice. Data collectors were inclined to
select shortest paths, and the travel sequence included direct
visits to closely located places such as neighboring stores,
and rooms separated by a single floor. Places included vari-
ous snack bars, stores, cafeterias, and lab rooms in 8 differ-
ent buildings on campus, two outdoor plazas, and 5 different

Figure 4. Remembered place (by users) anddiscovered places (by place
detection algorithms). Morecorrect and interesting places indicate bet-
ter performance, while the distribution of erroneous places allows us to
understand the strength and weakness of each technique.Interesting
places are usually brief visits that were mistakenly unrecorded.

markets and stores near campus. Distance between places
varied from 1 to 10 minutes by a normal walk. Data collec-
tors were asked to stay at a place for at least 8 minutes and
carefully record the entrance and departure times.

4.2 Evaluation Methods
Place. To quantitatively evaluate the effectiveness of de-

tecting place visits closer to how people normally perceive
places, we use a set of meaningful and erroneous places de-
fined in [14] (Figure 4). We ask human participants to log
any place they visited and stayed for more than 5 minutes
and use this as our ground truth1, rather than attempting to
define a place geographically. Places recorded by users are
calledremembered places and places discovered by place de-
tection algorithms are calleddiscovered places. Places that
are both recorded and discovered are further categorized as
correct, merged, anddivided. If two different places are dis-
covered as a single place, the place is labeled asmerged, and
if a single place is divided into two or more, it is labeled as
divided. Others that were both remembered and discovered
are classified ascorrect. Recorded but not discovered places
are calledmissed. Places that are not recorded but discovered
are further classifiedinteresting if the user claims it was mis-
takenly unrecorded, andfalse otherwise. We further define
precision andrecall as follows:

Precision =
# Correct + # Interesting

# Discovered
, Recall =

# Correct

# Remembered

Finally, the accuracy of detected entrance and departure
times are measured by the difference between the time deter-
mined by a place discovery technique and the time manually
recorded by data collectors.

Path. Obtaining ground truth of the travel distance is fun-
damentally challenging. Recording every sidewalk, cross-
road, and turn is accurate but very costly, especially when
collecting real-life data for multiple days. Instead, we ag-
gressively clean the GPS samples to estimate travel distance
and use this data as our ground truth. Filtering GPS data is
necessary as it is subject to errors up to several km (a.k.a.
jumps) and outages indoors. We use three criteria to filter
noisy GPS samples: 1) accuracy value above 30 m, 2) visi-
ble satellite number less than four (a GPS receiver requiresat

1Home is regarded as a single place and commercial places are
associated with stores. In office areas, small rooms within afew
seconds of walking is considered as one place, while others that fall
outside this determination are considered distinct places.
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Figure 5. HTC G1 Energy Profile. Two Agilent 34410A digital multime-
ters are used to measure power consumption (through external power
supply) while running our software. The power data is downloadable
from here: http://urban.cens.ucla.edu/resources/g1power/.

least four satellites for positioning [25]), and 3) speed value
equal to 0. We empirically determined the threshold values.
This process allows us to filter inaccurate GPS fixes, that oth-
erwise would have led to an overestimate of travel distance.

Energy consumption. To evaluate energy consumption,
we use the average power to estimate the impact on bat-
tery life. The latest mobile phones are typically loaded with
a 1500mAh lithium-ion battery which has a 3.7V nominal
voltage. Thus, a phone powered by a 1500mAh battery can
last 24 hours if it uses 231.25mW (1500mAh· 3.7V / 24h)
on average. We estimate the average power requirement for
each algorithm by using the energy profile of HTC G1, which
we experimentally obtained (Figure 5), and the active-time
duration (combined with sampling rate) of each sensor.

4.3 Experiment Results
We start with briefly explaining our parameter settings

used for the experiments, and the two state-of-the-art place
learning algorithms, PlaceSense [14] and Kanget al. [13],
we implemented to evaluate our place detection algorithm.
Sensitivity analysis of our parameters is presented at the end
of this section.

SensLocuses a similarity thresholdtsim to determine en-
trance and departure. In our experiment,tsim, which can
range from 0 to 1, was set to 0.7 as it was empirically found
to be most effective. Step size (rstep), which defines the range
of response rate used to select representative beacons, was
set to 0.2. Minimum threshold (rmin), which sets the lower
bound of the threshold, was set to 0.5. We experimented with
two different Wi-Fi scanning intervals, 10 and 30 seconds,
and a window size of 30 and 60 seconds were used, respec-
tively. The certainty value, which determines the number
of scan windows that are used to detect entrance and depar-
ture, was set to three (and two when the scanning interval is
30 seconds), as suggested by others using similar window-
ing mechanisms. For movement detection, we duty-cycled
accelerometer 50%, and a conservative variance threshold
value (vmov) 0.2 was used to find sleep opportunities. Paths
were tracked with a 1/10 Hz GPS sampling rate.

PlaceSense, similar to ours, relies on radio beacons to
find places. Absence of newly-seen beacons triggers en-
trance detection and disappearance of every representative
beacon signals departure. For fair comparison, we matched
the parameter settings with SensLoc when they have same
interpretations. We used a Wi-Fi sampling interval of 10 sec-
onds, a window sizew of 30 seconds, and sliding windows
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Figure 6. Number of place visits found from five people over a week
following their normal life. SensLoc outperforms PlaceSense with more
correct places, and fewermerged and false places.

were applied. Stable depths and tolerance deptht is equiv-
alent to our certainty valuec so we also used three. A fixed
representative beacon threshold was set to 0.9 as suggested.

Kang et al. designed a time and distance based cluster-
ing algorithm to find significant locations and is used widely
by others using GPS trajectories to find significant locations
[18, 26]. We used parameters for timet=5 minutes and
d=200 meters. GPS coordinates collected every 10 seconds
were used as input and GPS failures were regarded as a stay
within the distance threshold. To improve its performance,
GPS samples with low accuracy value (above 30m) were fil-
tered.
4.3.1 5-person short-duration study

The goal of this study is to evaluate SensLoc over var-
ied demography. Participants included an office worker, a
housewife, a pharmacist, and two graduate students in differ-
ent departments. Their age varied from mid-20s to mid-50s.
The participants collected their traces over a week following
their normal routines, and kept a diary of the actual places
they visited with entrance and departure times. To provide
anonymity, we assign the pseudonyms Adam, Beka, Charlie,
Dana, and Evan.

Typical traces contained ordinary work and home routines
during weekdays and visits to shopping areas for weekends.
Adam drives to work and visits various buildings located in
a walking distance during work hours. His office is in the
7th floor of a 8-story building. He has the longest commute.
Beka also regularly drives to a private institute and spends5
hours a day during weekdays, but does not have many places
near it other than a classroom which is located on the 4th
floor of a 4-story building. Her traces instead includes fre-
quent visits to several grocery stores and a couple of restau-
rants. Charlie takes a bus to school and visits various lab
rooms and class rooms during the week. On the weekend,
he visits several stores. Dana walks to work in a dense ur-
ban area and has the shortest commute distance. She works
at the first floor of a 2-story building located near tall build-
ings. She visits various lunch places near work and lives on
the 9th floor of a 14-story building. Evan commutes by a bus
and visits about three different places at work, and some-
times stops by stores before arriving at home. The weekend
includes visits to superstores.

Place Detection. First, to evaluate our effectiveness in
detecting place visits, we compare SensLoc against previ-
ous techniques using the metrics presented in Section 4.2.
Figure 6 illustrates the place detection performance of dif-
ferent techniques on the 5-person 1-week data set. Overall,
SensLoc outperformed other place detection algorithms with
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Adam Beka Charlie Dana Evan All

SL10 SL30 PS KA SL10 SL30 PS KA SL10 SL30 PS KA SL10 SL30 PS KA SL10 SL30 PS KA SL10 SL30 PS KA

Cor. 47 45 40 12 25 24 25 19 40 36 41 18 30 23 24 11 34 33 31 19 176 157 159 79
Int. 3 2 3 1 4 2 4 1 6 6 2 0 0 0 0 0 3 3 4 3 16 13 13 4

Mer. 0 0 6 37 0 0 0 5 0 0 2 24 0 2 6 20 0 0 5 16 0 2 19 102
Div. 2 1 2 0 1 2 1 2 2 4 0 1 3 4 1 0 2 3 1 0 10 17 7 3
Mis. 0 4 1 0 0 0 0 0 1 3 0 0 0 4 2 2 1 1 0 2 2 12 3 4
Fla. 1 2 5 10 0 0 3 0 1 1 9 7 1 0 3 2 0 0 5 14 3 3 25 33

Recall 0.96 0.90 0.82 0.24 0.96 0.92 0.96 0.73 0.93 0.84 0.95 0.42 0.91 0.70 0.73 0.33 0.92 0.89 0.84 0.51 0.94 0.84 0.85 0.42
Precision 0.94 0.94 0.77 0.22 0.97 0.93 0.88 0.74 0.94 0.89 0.80 0.36 0.88 0.79 0.71 0.33 0.95 0.92 0.76 0.42 0.94 0.89 0.77 0.38

Table 1. The distribution of discovered places by differentusers (SL10: SensLoc [Wi-Fi 10s], SL30: SensLoc [Wi-Fi 30s], PS: PlaceSense [Wi-Fi 10s],
KA: Kang et al. [GPS 10s]). Overall, SensLoc outperformed others with the largest number ofcorrect places and the smallest number offalse places.

the largest number ofcorrect places. PlaceSense merged
places where more than one beacon is found strongly in both
places, a known limitation [14]. For example, short trips
(typically within a few minutes of walking), such as moving
from one floor to another in the same building often shared
strong beacons in both floors, and consequently were merged
as a single place. In contrast, SensLoc’s detection algorithm
exploits changes in signal strengths, and was able to cor-
rectly distinguish many adjacent indoor places. SensLoc also
significantly reduced false detections using its robust similar-
ity measurement and improved filtering method. However,
PlaceSense had relatively morefalse places. It recognized a
slow walk through an open area or a hallway as a place when
at least one strong beacon was found consistently during the
walk as it only depends on the visibility of the beacon.

Kanget al., based on GPS, resulted in significantly more
merged places as many proximate places located in nearby
buildings were identified as a single place. Intuitively, as
GPS coordinates were not available indoors, adjacent places
in closely located buildings could not be identified. Kanget
al. also resulted in the largest number offalse places. Similar
to PlaceSense, slow walks in an open area or slow drives on
a congested road were often identified as a place. Note, how-
ever, that itdivided fewer places, by correctly finding more
superstores or outdoor places where Wi-Fi APs were sparse.
Large stores were sometimes not covered by strong Wi-Fi
APs and Wi-Fi beacon-based techniquesdivided them into
several different places (ormissed). However, as they typ-
ically were located in a single-story building, high-quality
GPS coordinates were available in these places. Thus, a hy-
brid approach adequately combining both techniques may
improve the overall performance of the system.

It is interesting to note that decreasing SensLoc’s Wi-Fi
sampling rate did not significantly degrade the performance,
although it resulted in moremissed or divided places when
beacon signals were sparse or weak. Increasing the sampling
rate naturally improves performance, but comes with a cost
of energy consumption. Our result suggests that SensLoc can
provide accurate place detection with a 1/10 Hz Wi-Fi scan-
ning rate, and can reduce its sampling rate to 1/30 Hz when
the remaining energy-level of the device is low but still can
provide a reasonable level of performance. However, even
with a Wi-Fi sampling rate of 1/10 Hz, the overall energy
consumption of SensLoc is significantly lower than others as
we show in the next section.

Table 1 shows the distribution of erroneously discovered
places by users. On average, SensLoc correctly recalled

Daily Avg. Adam Beka Charlie Dana Evan

Distance (m) 28602.87 16679.40 18046.97 8951.18 13614.47
Coverage (%) 98.5 97.3 98.2 86.1 94.1

Table 2. The total distance traveled by each participant andpercent of
the travel distance covered by SensLoc. On average, it only used GPS
for about two hours a day and yet covered above 95% of the distance.

94% of the visited places and 94% of the found places were
actually visited. The improvement of SensLoc over Place-
Sense was noticeable when users had many nearby places
in their routine. For example, Adam and Evan frequently
visited two office rooms in different floors at work which
PlaceSense failed to detect. Dana’s routine included fre-
quent visits to nearby stores which shared strong beacons.
However, when a user’s daily routine did not include many
nearby places, SensLoc performed similar to or slightly bet-
ter than PlaceSense. For instance, Beka had a simple routine
visiting only a single place in each building, and the per-
formance difference was less significant. Overall, SensLoc
detected fewer false places than PlaceSense, resulting in a
consistently higher recall number for every participant.

Path Tracking. To evaluate how effectively SensLoc
tracks user’s travel paths, we consider two aspects of track-
ing: the percentage of the total travel distance covered by
an on-demand path tracking and the quality of the collected
position estimates.

First we investigate the travel distance recorded by
SensLoc compared to when the device continuously tracked
a user’s location. We define coverage as the percentage of the
distance tracked by our path tracker and the total travel dis-
tance tracked by continuous GPS tracking. Table 2 presents
the daily average travel distance of each data collector and
the coverage of SensLoc. The average travel distance was
mostly influenced by a participant’s commute distance. On
average, SensLoc covered nearly 95% of the travel distance
while the coverage slightly differed between data collectors.

The coverage varied from 86.1% to 98.5% depending on
a user’s daily travel pattern. A small delay before starting
path tracking when a user departs from a place was the main
cause of missing partial travel distances. As the absolute
length of the lost distances were similar between users, par-
ticipants with a longer average travel distance had a better
coverage than others with a shorter average travel distance.
For instance, Dana particularly traveled a shorter distance as
she lives in a dense urban area and walks to work and had the
lowest coverage. On the other hand, Adam with the longest
commute distance received the highest coverage. Nonethe-
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Figure 7. The overall quality of the collected GPS coordinates measured
by the reported accuracy value and the number of visible satellites used.

less, the coverage was not significantly compromised for all
data collectors (more than 95% for 4 participants, and 86.1%
for one participant). Note that SensLoc, on average, only had
to activate GPS for two hours a day (presented next), and yet
could cover above 95% of the travel distance.

The overall quality of the collected position estimates are
measured by the reported accuracy value and the number of
visible satellites used for estimating the position. As long as
a GPS receiver has stable signals from at least four satellites,
the estimation error of the position fix is known to be within
15 meters [25]. First we investigated the average probability
of high quality GPS position fixes among the collected ones.
We compared the positions collected from SensLoc against
the ones from periodic GPS sampling. Both used 1/10 Hz
as their GPS sampling rate. Figure 7 demonstrates that we
can carefully acquire GPS coordinates only when it is most
likely to provide estimates with high accuracy by tracking
GPS only when traveling between places.

Naturally, the places that participants spend most of their
time largely affected these results. Adam and Evan’s work
place had no signals or severely inaccurate position esti-
mates. Charlie’s work place was located at the top floor and
had positions with relatively better accuracy values. During
the experiment, GPS usually had more visible satellites and
provided fixes with good accuracy values when the floor is
near the rooftop, but degraded significantly when multiple
floors are above. Dana showed lower quality as she mostly
traveled between high-rise buildings in a dense urban area.
Results from Beka’s data illustrate that the accuracy value
can be worse than 30 meters even when the GPS used more
than four visible satellites to estimate its position. Her class-
room, which she frequented, had about four visible satellites
on average, but the accuracy value of the position fixes was
often worse than 30 meters and had a lot of jumps. Figure 8
illustrates the cumulative distribution of the quality of GPS
position fixes from a single day, showing that we can suspend
GPS tracking when it is unlikely to provide good estimates.

Energy Consumption. Finally, we analyze SensLoc’s
daily energy consumption by different users to understand
the energy cost of continuously detecting place visits and
tracking travel paths. To estimate the power consumption,
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Figure 8. GPS Quality CDF from a single day. The fixed-rate scheme
collected more position fixes from indoors, reducing the overall quality
of the collected GPS position estimates. In contrast, SensLoc acquired
position fixes mostly when a user travelled outdoors.

we logged the time each sensor was activated and used the
average energy consumption of each sensor we attained from
power measurements of the HTC G1 phone (Figure 5). Here,
we present the case when SensLoc used a sampling inter-
val of 10 seconds for both GPS and Wi-Fi. We also experi-
mented with higher Wi-Fi sampling rates to see if it improves
the place detection performance. However, more samples
did not necessarily improve the performance by introduc-
ing more noises, while consuming significantly more energy
(Figure 5). On the other hand, higher GPS sampling rates
could improve path information (especially when traveling
at high speeds). but does not directly affect SensLoc’s per-
formance and is a tunable parameter that responds to appli-
cation needs and energy budgets. The duty cycle of the ac-
celerometer was 50% (over a 10 seconds period) to detect
movements (as explained in Section 4.3), and provided suf-
ficient information for detecting movements to trigger Wi-Fi
scans while saving substantial amount of energy.

Figure 9 presents the average time each sensor was ac-
tive during a day’s operation by each participant. The error
bars show the maximum and minimum time each sensor was
active for a day during the one week experiment. As sen-
sors are powered on and off depending on the user’s loca-
tion and movement, on-times were largely dependent on the
level of activity during a particular day. For instance, when
a user visited many places or traveled long distances, the ac-
tive time of Wi-Fi and GPS increased, while the active time
of the accelerometer decreased. On the other hand, when a
user mostly stayed at home, the accelerometer was on almost
all the time, while others were barely used. The bars in Fig-
ure 9 also implicitly reveal the relative number of places each
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Figure 9. The average active time of each sensor used by SensLoc. For
most the time, the accelerometer monitors the user’s movement, while
GPS and Wi-Fi are used less frequently.
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Figure 10. Average daily power consumption across five different users.
The level of power consumption depended on the level of mobility.

participant visited over the week experiment. Adam had the
largest number of place visits, which resulted in longer Wi-
Fi active times and shorter accelerometer active times, while
Beka exhibited the opposite by having the smallest number
of place visits. The average on-times of each sensor over the
five participants were 1.4 hours for GPS, 1.8 hours for Wi-
Fi, and 22.3 hours for accelerometer. This also agrees with
the studies [16, 9] reporting that people spend nearly 90% of
their time indoors.

Using the results from above, we further estimated the
overall energy used by SensLoc (Figure 10). Additionally,
we provide the estimated energy cost when path tracking is
disabled and only place and movement detection is enabled.
This eliminated the cost of tracking GPS positions as well
as the savings achieved by turning off Wi-Fi when GPS re-
ported that the user is traveling at high speeds. We added this
to compare against PlaceSense which does not track paths
nor uses an accelerometer to save Wi-Fi scans. PlaceSense
detects places with periodic Wi-Fi scans and its energy cost
can be derived from the average energy consumed by sam-
pling Wi-Fi scans every 10 seconds. Savings were dras-
tic. SensLoc without path tracking used 32.8mW on average
which is nearly 50% of what PlaceSense used (64.38mW).
The savings were from using a more energy-efficient duty
cycled accelerometer instead of Wi-Fi scans when the de-
vice was immobile. When SensLoc also tracked paths by
sampling GPS coordinates every 10 seconds only while trav-
eling between places, it still used only 54.8mW on average
which is about 87% less than the energy consumed by col-
lecting GPS every 10 seconds (392.2mW).

4.3.2 2-person long-duration study
To better understand SensLoc’s expected performance

and energy cost over a long-term use, we use a data set col-
lected by two people over four weeks. We first investigate
how well SensLoc discovers new places and recognizes them
when they are revisited. Then we discuss the paths that were
found and the fluctuation in energy consumption over the 28
days of experiments. Before we start, we briefly explain our
two data collectors who provided the data set.

Our data collectors are assigned the pseudonyms George
and Harry. George is a parent of one child. Many of his
places involve driving his kid to school, restaurants, and ex-
tracurricular activities. He has two different work places
where he goes for half of a week each. His wife usually
drops him off at work and he takes buses home. One of the
two offices is located in a multiplex building where he fre-
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Figure 11. Percent correctly discovered new places from thefour weeks
real-life data set.

quently visits several office rooms separated by more than a
minute’s walking distance. Weekends involve visits to var-
ious stores and markets. He also drove to friends living in
different cities a couple of times during the data collection.
He visited 61 unique places and traveled 1003.08 km over 4
weeks.

Harry is single and drives to work but occasionally
chooses to take buses. When he drives, he takes three dif-
ferent routes to commute depending on the time of the day
to beat traffic. He visits several nearby buildings and out-
door patios during work hours for meetings and lunch. He
also takes lessons during lunch time twice a week near work
and frequently visits a coffee shop. Many of his places are
near work or home. For weekends, he regularly visits out-
door courts for sports, restaurants, gas stations, and a couple
of stores for groceries. He visited 49 unique places and trav-
eled 568.28 km for 4 weeks.

Learning New Places. First we evaluate how well
SensLoc discovered new places that our data collectors vis-
ited over a month as they went about their normal routines.
Here, we compare SensLoc with previous place learning al-
gorithms: PlaceSense and Kanget al. We labeled each visit
with a unique place name which we learned from the diaries
provided by our data collectors, and then found every first
visit to a unique place. A total of 110 first visits to a unique
place was used for this evaluation.

Figure 11 illustrates the percentage of correctly detected
first visits for each algorithm. Both PlaceSense and SensLoc
found new places well when the place was covered by at least
one steady Wi-Fi AP. SensLoc correctly found 10% more
first visits than PlaceSense by significantly reducingmerged
detections using its new place detection algorithm. SensLoc
particularly performed better than PlaceSense in separating
two adjacent places sharing similar beacons. Kanget al.
logically failed to find many indoor places in closely lo-
cated buildings, and correctly found only 44% of the places.
While the two beacon-based techniques outperformed the
GPS-based technique overall, in some cases, GPS-based ap-
proach worked better. For example, a couple of places in-
cluding middle school gyms, outdoor parks, and particular
superstores had sparse and weak Wi-Fi APs signals, and
were challenging for beacon-based techniques to detect well,
resulting in divided places. On the other hand, a GPS-
based algorithm worked better in correctly detecting these
places, having only 2% ofdivided places (compared to 5%
of SensLoc and 7% of PlaceSense). Thus, to further improve
the place coverage, a hybrid approach using both radio sig-
nals and positions to detect places may be considered.
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Figure 12. Percent correctly discovered and recognized from the four
weeks real-life data set using two different recognition algorithms (cos:
cosine-based recognition, his: histogram-based recognition).

Recognizing Revisited Places.To investigate the overall
performance of recognizing revisits, we used the first cor-
rectly discovered visit for learning, and used every other
visits for testing the recognition performance. We also
compared our new cosine-based place recognition scheme
against the previously proposed histogram-based scheme
[11]. For this evaluation, we used 358 revisits to 37 unique
places and excluded 73 places which only had one visit over
the four weeks (43 places from George and 30 places from
Harry). The percentage of correctly recognizing revisits is
the ratio of the algorithm correctly recognizes the place to
the total number of visits the data collector actually made.
Errors are further broken down towrong (recognized as a
different place) andmissed.

Figure 12 illustrates the recognition performance of
SensLoc by the total time spent in the place during a visit
and by the total number of visits after the first visit. Overall,
96% of the revisits were correctly recognized by using the
cosine-based recognition scheme, while 94% was correctly
recognized by the histogram-based scheme. The improve-
ment was noticeable in correctly differentiating closely lo-
cated places. Places that resulted inwrong recognition were
recognized as another adjacent place sharing similar beacons
for both algorithms.Missed places included 2-3 short visits
to a room covered with no Wi-Fi APs and a couple of outdoor
places which were visited 4-6 times during the data collec-
tion. The radio environment of a particular place affected our
recognition performance more than the visit duration or the
visit frequency.

Paths Connecting Places.SensLoc automatically traced
and parsed 293 paths over the four weeks (excluding 150
indoor travels) from the two data collectors’ daily routines.
George traveled 148 times between 102 unique pairs of
places, while Harry traveled 145 times between 90 unique
pairs of places, creating 293 paths in total. Figure 13 shows
the distribution of the paths by their travel distance, travel
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Figure 13. The distribution of recovered paths by their distance length,
time duration, and unique pairs of places the path connected.
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Figure 14. Stack plots of diurnal power consumption over thefour
weeks. The power consumption of GPS fluctuates substantially depend-
ing on the level of mobility. High-peaks are due to long-distance drives
to different cities, and dips are from stay-at-home days.

time duration, and the number of tracks between a unique
pair of places it connected. Most of the paths shorter than
1 km were travelled by walks and the longer ones were by
driving cars or taking other transportation such as buses.

Unlike other tracking schemes, SensLoc additionally pro-
vided new context information for these paths. By attaching
information about which places the path connects, SensLoc
allows us to filter and query paths based on where the path
started and ended. For example, if an application wants to
find the shortest path or the fastest route between “home”
and “my office”, it can simply query every recorded path
connecting the two places. As an experiment, we queried
every path between “home” and “my office” from Harry’s
data. We retrieved 30 paths2 which we could distribute to
three different ranges of distances. There were six paths 6-7
km long; four paths 8-9 km long; 20 paths 10-11 km long.
By simply looking at the travel distance, we could infer that
Harry has at least three different routes he takes to beat the
traffic depending on the time of the day.

Diurnal Energy Consumption Patterns. Finally, we in-
vestigate the daily power consumption of SensLoc over the
four weeks. By looking at the changes in the energy con-
sumption over multiple days (as illustrated in Figure 14),
we can notice how the user’s mobility over the day can sig-
nificantly affect SensLoc’s average power consumption for
that particular day. While the average power consumption of
Wi-Fi and accelerometer stayed around 6mW (2-4 hours a
day) and 26mW (20-22 hours a day), the average power con-
sumption of GPS fluctuated significantly from a minimum of
4.5mW (15 minutes a day) to a maximum of 76.8mW (4.7
hours a day). Note that Figure 14 is a stack plot that accu-
mulates the average power consumption of the accelerome-
ter, Wi-Fi, and GPS. The two peaks in George’s data illus-
trates the two long-distance travels he made to the friends
living in different cities. On the other hand, the days with
noticeably low GPS usage illustrates that the data collector
mostly stayed at home. Consequently, the accelerometer was
used more than other days. However, even for the worst day,

2This also implied that he often stopped by other places in be-
tween as he went to work more than 15 times.
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SensLoc averaged about 110mW3. The battery life can be
significantly improved if we lower the GPS sampling rate as
well (note that we collected GPS every 10 seconds).
4.3.3 Controlled Experiments

Our place detection algorithm dynamically adjusts the
representative threshold (rrep) and the window size (w) to
adapt to the changing beacon environment. However, the al-
gorithm still depends on a fixed similarity score threshold
(tsim) and a response rate step size (rstep). In this section,
we investigate the sensitivity of the performance results to
the choice of these fixed parameters to arrive at sweet spots
for these parameter values. We use a scripted-tours data set
as it provides more accurate ground truth over the real-life
data set, but the results are consistent in both data sets. The
scripted-tours included visits to many indoor places adjacent
to each other, such as rooms in different floors and stores
cluttered in a commercial area near campus. We first exam-
ine the similarity score threshold (tsim) and the response rate
step size (rstep) by varying these parameters while fixing the
rest of the parameters to values which resulted in the best
performance. Then, we illustrate how changing the window
size (w) impacts the performance. Finally, the performance
of our final version is compared against other algorithms in-
cluding PlaceSense and Kanget al. with different GPS and
Wi-Fi sampling rates. We also illustrate the visit-time bound-
ary accuracy of different techniques and sampling rates.

tsim Cor. Mis. Fal. Mer. Div. Precision Recall

0.9 43 7 0 0 0 0.86 0.86
0.8 46 4 0 0 0 0.92 0.92
0.7 48 2 0 0 0 0.96 0.96
0.6 43 2 1 4 1 0.84 0.86
0.5 43 1 2 6 0 0.83 0.86

Table 3. The distribution of errors with different similari ty threshold.
Larger threshold value tsim results in fewer merged and false places, but
more missed places.

As shown in Table 3, a smaller Tanimoto similarity
threshold tsim resulted in fewermissed places and more
merged places as it becomes conservative in declaring a de-
parture. A largertsim increases the level of similarity it ex-
pects to determine if the signal fingerprints are from a sin-
gle place. It also increases the chances of missing places by
falsely inferring stays as travels. All of themissed places
included commercial stores where data collectors had more
movement within a place or received weak beacon signals.
A smallertsim allows more fingerprints with lower similarity
to be regarded as from a single place, and increases the num-
ber ofmerged places. Thus, a moderate value such as 0.7 is
preferable for reducingmissed andmerged places.

When measuring the similarity of two fingerprints for de-
tecting an entrance, every beacon found in both fingerprints
is used. However, to avoid intermittent beacons falsely trig-
gering a departure, a subset of strong beacons are used to
evaluate the similarity between two fingerprints when de-
tecting a departure. SensLoc selects strong beacons based
on their response rate, and the threshold (rrep) is adaptively

3A 1500mAh battery can last 24 hours when, on average, 231.25
mW is used.

rstep Cor. Mis. Fal. Mer. Div. Precision Recall

0 39 1 1 10 0 0.76 0.78
0.1 46 2 0 2 0 0.92 0.92
0.2 48 2 0 0 0 0.96 0.96
0.3 48 2 0 0 0 0.96 0.96
0.4 47 3 1 0 0 0.92 0.94

Table 4. The distribution of errors with different representative beacon
threshold. Larger rstep includes more beacons in representative set.

defined by observing the maximum response rate and sub-
tracting a step sizerstep. Thus, a lagerrstep includes more
beacons in the representative beacon set and becomes more
sensitive to changes. Table 4 shows that a largerrstep results
in more false places. In contrast, a smallerrstep uses only
the strong beacons to evaluate the similarity and increases
the number ofmerged places. Again, a middle ground value
such as 0.2 led to an overall better performance.

w Cor. Mis. Fal. Mer. Div. Precision Recall

20 45 5 0 0 0 0.90 0.90
30 48 2 0 0 0 0.96 0.96
40 49 1 0 0 0 0.98 0.98
50 46 2 1 2 0 0.80 0.92
60 46 0 2 4 0 0.88 0.92

adaptive 50 0 0 0 0 1.00 1.00

Table 5. The distribution of errors with different window si ze. Larger
w results in more merged places, but fewermissed places.

A window sizew of a scan window combined with the
sampling rate defines the number of samples included in each
scan window. More samples in a scan window allows us
to detect places where beacons are sparse and weak, but it
becomes less sensitive to changes. Table 5 shows that us-
ing a largerw reducesmissed places by additionally detect-
ing places with low-response-rate beacons, but also increases
merged andfalse places. Thus, we take an adaptive approach
by increasingw when the neighboring beacons are sparse.
We infer this when the adapted representative threshold is
below rmin, which is set to 0.5 for this experiment. This
adaptive approach eliminated themissed places and also sup-
pressed merging places where beacons are dense.

Algorithm Cor. Mis. Fal. Mer. Div. Precision Recall

SL (WiFi 10s) 50 0 0 0 0 1.00 1.00
SL (WiFi 30s) 46 4 0 0 0 0.92 0.92
PS (WiFi 10s) 34 5 3 11 0 0.64 0.68
PS (WiFi 30s) 34 0 5 16 0 0.61 0.68
KA (GPS 10s) 10 4 2 38 0 0.19 0.20
KA (GPS 30s) 9 7 3 35 0 0.18 0.18

Table 6. The distribution of errors by different algorithms with varying
sample rate (SL: SensLoc, PS: PlaceSense, KA: Kanget al.)

To summarize, we use the settings that lead to the best
place detection performance and compare each algorithm.
For SensLoc, our results suggest that a moderate value works
best for the two fixed parameters, and adjusting other pa-
rameters based on the changing radio environment further
improves performance results. Table 6 compares the per-
formance of different place detection algorithms on traces
from scripted tours. The parameter settings were same as
described in Section 4.3. PlaceSensemissed places where

53



−120 −60 0 60 120 180 240
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time offset from ground−truth (in seconds)

P
ro

ba
bi

lit
y

Place Departure Time Accuracy [CDF]

 

 

PS [WiFi 10s]
SL [WiFi 10s]
SL [WiFi 30s]
KA [GPS 10s]
KA [GPS 30s]

(a) Departure

−240 −180 −120 −60 0 60 120 180 240
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time offset from ground−truth (in seconds)

P
ro

ba
bi

lit
y

Place Entrance Time Accuracy [CDF]

 

 

PS [WiFi 10s]
SL [WiFi 10s]
SL [WiFi 30s]
KA [GPS 10s]
KA [GPS 30s]

(b) Entrance

Figure 15. Time boundary accuracy. For 80% of the visits detected by
SensLoc, time offset of departure times are within 0 to 30 seconds, and
entrance times are within -60 to 60 seconds.

beacons were weak andmerged places where places shared
similar beacons. In contrast, SensLoc was better in detecting
adjacent places sharing more than one strong beacon. Nat-
urally, Kanget al. based on GPS resulted in moremerged
places, but worked reasonably well in finding building-level
significant locations, unless the buildings are closely located.
Reducing the sampling rate to 1/30 Hz from 1/10 Hz gener-
ally degraded the performance for all algorithms, but not sig-
nificantly. The certainty value (cmax) combined with the sam-
pling rate determines the minimum time delay before declar-
ing entries and exits. We empirically found thatcmax = 3 for
1/10 Hz andcmax = 2 for 1/30 Hz work best.

Finally, we evaluate the time-boundary accuracy of the
detected places by their entrance and departure time. We first
compare the accuracy of different algorithms, and then dis-
cuss how the sampling rate affects the accuracy. To measure
the time-boundary accuracy of places found by algorithms,
we measure the time offset of entrance and departure times
from the ground truth (logged in diaries). We excludemissed
places and use only the beginnings and ends that matched
with the ground truth fordivided andmerged places. We dis-
cuss the departure time first as it may affect a subsequently
visited place’s entrance time. Many of the places visited dur-
ing the scripted tours were within a couple of minutes walk-
ing distance and could affect each other’s time boundaries.

As shown in Figure 15(a), the time offset of departure
time for SensLoc was within 0-30 seconds for about 80% of
the visits. For 10% of the visits, the inferred departure time
was 0-60 seconds earlier than the actual departure time, and
10% had 30-120 seconds offset. PlaceSense generally had
more delays in the found departure times as it has to lose
every representative beacon before it declares a departure.
About 80% of the visits had 0-120 seconds offset in their
detected departure time. Kanget al. had even larger off-
sets as the places it found were generally coarser than places
found by beacon-based algorithms. Figure 15(b) illustrates
the accuracy of the found entrance times. The time offset of
entrance times for SensLoc was within -60 to 60 seconds for
about 80% of the visits, while PlaceSense’s entrance times
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Figure 16. Detection Delay. For 80% of the visits detected bySensLoc,
detection delay of departure times are within 30 to 60 seconds, and en-
trance times are within -30 to 120 seconds.

were relatively delayed, possibly due to the delayed depar-
ture time of the previously visited place. Decreasing the
sampling rate had insignificant impact on the accuracy of the
inferred entrance and departure time for all algorithms.

Lastly, we investigate the actual time it takes before the
algorithm can declare an entrance or a departure. As place
learning algorithms use several scan windows before declar-
ing an entrance or a departure, the detection time and the
inferred time-boundary differs. We define the time it takes
to detect events as detection delay (offset from ground truth)
and illustrate each algorithm’s detection delay in Figure 16.
SensLoc resulted in lower detection delay for both entrance
and departure compared to others. The departure detection
delay for SensLoc was 30-60 seconds for 80% of the vis-
its when using a sampling rate of 10 seconds, while Place-
Sense exhibited 90-210 seconds delays. Similarly, SensLoc
detected entrance within 120 seconds for 90% of the visits
while PlaceSense took the same amount of time for about
70% of the visits. By using a robust similarity measure-
ment method to detect places, SensLoc improves the time-
boundary accuracy and detection delay as well.

5 Related Work
Semantic Place Learning.Place learning algorithms at-

tempt to find meaningful places from raw sensor data. We
can broadly classify them into two categories: geometry-
based and fingerprint-based approaches.

Geometry-based algorithms identify places as a set of co-
ordinates within circles or polygons. These algorithms use
periodically collected position estimates to detect an indi-
vidual’s stay in a certain region and infer significant places.
Essentially, the achievable granularity (e.g., room-level or
building-level) depends on the underneath positioning sys-
tem they rely on. For example, Marmasseet al. defines a
place as a Euclidian ball with a fixed radius where GPS is
unavailable [23]. Ashbrooket al. and Toyamaet al. pro-
posed using a variant of the k-means clustering algorithm to
tune the clusters found by GPS signal losses [2, 31]. Liao
et al. iteratively infer activities and significant places from
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GPS traces using a hierarchical CRF model, and the model
is trained by fitting parameters using a labeled trace [19].
Nurmi et al. proposed a Dirichlet process clustering algo-
rithm that does not require parameter fitting, but may take
hundreds of thousands of iterations to converge depending
on the trace [24]. Kanget al. [13] improved an approach pro-
posed by Hariharanet al. [10] that finds places by defining
temporal and spatial stay thresholds without depending on
GPS disappearances. Unlike others requiring the entire trace
for offline segmentation and inference, their heuristic algo-
rithm based on distance and time can be used in real-time
and is computationally less expensive. These approaches
are found to be fairly effective at discovering building level
places or outdoor places, but suffers from differentiatingin-
door places at dense urban area besides the energy consumed
by continuously estimating positions.

Ambient fingerprints have been successfully used for de-
tecting semantic places with finer granularity than that of the
geometry-based approaches. This includes RF fingerprints
(e.g., Wi-Fi, Bluetooth, and cell tower), surrounding color,
texture, and sound pattern. Among these, RF fingerprints
have been most popular in discerning subtle differences be-
tween semantically different places. The key benefit over
other ambient signatures is that the RF beacons can be moni-
tored regardless of placement of a mobile device. For exam-
ple, currently connected cell towers were used to learn and
recognize places [17, 7, 33] albeit with coarse granularity,
and at the cost of complex implementation [29]. Beacon-
Print rely on new beacons to infer place visits [11]. Place-
Sense further improved its place discovery accuracy by us-
ing separate mechanisms to detect entrances and departures
[14]. These algorithms are compatible with cell towers, but
Wi-Fi APs provided more robust and finer grained informa-
tion about semantic places. Other ambient signatures such
as sound, light, color, and texture information can be used to
further discern subtle differences between adjacent locations.
SurroundSense uses ambient sound, light, color, user motion
in a place in addition to RF signals [3]. Besides its ability to
discriminate adjacent places that share similar radio bacons,
it can also cluster semantically closer places (e.g., remotely
located franchised stores sharing similar looks). SoundSense
uses acoustic signatures to recognize activities and places
[21]. However, these approaches are not appropriate for de-
tecting visit boundaries and require careful placement of a
mobile phone such that the sensors can measure these signa-
tures unobstructed.

Energy-efficient Path Tracking. To make continuous lo-
calization practical, several research efforts have dealtwith
energy-efficient location tracking focused on preserving the
distance-error bounds requested by applications. Three re-
curring methods are 1) intermixing a set of positioning sys-
tems with varying accuracy and energy requirements, 2) pre-
dicting mobility to schedule the next location estimate, and
3) using low power sensors to find sleep opportunities.

EnLoc switches between localization techniques by find-
ing the optimal localization accuracy for a given energy bud-
get using dynamic programing [6]. It uses human mobil-
ity patterns to further improve its performance by predict-
ing user mobility rather than using the last known loca-

tion between consecutive location readings. A-Loc is based
on a selection algorithm that determines the most energy-
efficient localization technique to meet the accuracy require-
ment (which is also assumed to change as a user moves to
different areas) [20]. It predicts future user location using
a model based on HMM, updates the location and sensor
error models, and selects the sensor with minimum energy
use. EnTracked focuses on outdoor pedestrian tracking and
assumes that applications specify their distance-error lim-
its [15]. It detects movements using an accelerometer to
turn off GPS, and uses speed estimates provided by GPS
to predict movement and schedule the next location sample.
RAPS uses a collection of techniques to adaptively sample
GPS coordinates [25]. It duty cycles an accelerometer to de-
tect movement, uses space-time history of user movements
to predict mobility, and checks a GPS-available probability
table based on the surrounding cell towers. It also allows
users to share positions with neighboring users through Blue-
tooth. Zhuanget al. also uses an accelerometer to detect
movements, schedules two different localization techniques,
and adjusts sampling rates based on the battery-level [34].
EEMSS employs low power sensors to detect user states and
context, and triggers high power sensors only when neces-
sary [32]. While doing this, they duty cycle each sensor
to further save energy. More recently, Constandacheet al.
combine map information and dead reckoning based on low
power sensors to reduce GPS samplings [5]. These tech-
niques can be used to track paths for SensLoc, although they
may be needed for about 10% of the time on average.

6 Conclusion and Future Work
Our results show that SensLoc can both semantically and

energy-efficiently provide location context to applications by
using a combination of acceleration, Wi-Fi, and GPS sen-
sors to find semantic places, detect user movements, and
track travel paths. Place visits and path travels are inferred
from raw sensor data, which is energy-efficiently achieved
by leveraging our tendency to spend about 90% of the time
indoors and 10% in a vehicle or at outdoors. Precision and
recall of detecting semantic places are both improved com-
pared to the previous state-of-the-art PlaceSense approach
by additionally exploiting signal strength changes of the sur-
rounding beacons and adapting parameters to the neighbor-
ing beacon density. The accuracy gains are particularly no-
ticeable when a user’s routine includes back-to-back visits
to nearby indoor places (e.g., rooms on different floors) that
shares even a single strong beacon. SensLoc’s enhanced
place detection algorithm also improves the detected place
entrance and departure times by over 2.3 times the precision
of previous approaches. However, at some places where bea-
con signals are weak and unstable, PlaceSense, which only
considers the presence of beacons, detects places more ro-
bustly. Path tracking is only initiated when a user is traveling
between places, which allows us to achieve highly efficient
duty cycling of positioning systems (e.g., GPS 8.3% active
time), and still covers 95% of the travel distance. This not
only saves energy but also boosts the overall quality of the
collected position estimates. Lastly, the average power con-
sumption of SensLoc is about 54.8 mW, which is 6.2 times
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less than that of collecting GPS periodically. On average, ac-
celerometer, Wi-Fi, and GPS are activated for about 20-22,
2-4, and 1-2 hours everyday, respectively.

We believe SensLoc has solved some of the major prac-
ticality issues with continuous location tracking, and illus-
trated that an approach with a holistic and semantic point of
view may provide a realistic solution for many applications.
Our results also suggest that there is still more room for im-
provement to push the place detection performance even fur-
ther. Adaptive approaches intermixing several place learning
techniques based on the radio environment and the applica-
tion needs may allow us to cover the remaining 5% places
that are challenging. Using more energy-efficient sensors
may also reduce the energy cost. For example, cell tower
information, which almost comes for free, can replace Wi-
Fi scans, if mobile service providers become less reluctant
in disclosing cell tower information and more platforms pro-
vide common APIs to scan every neighboring cell towers.
However, we think most research should focus on develop-
ing an application stack with a well-defined set of APIs, and
create a feedback loop with the users that could tell us what is
really important to address. The outcome of these field stud-
ies will expose application demands and provide nuances to
tune the system for particular uses or situations.

7 References
[1] G. Ananthanarayanan, M. Haridasan, I. Mohomed, D. Terry, and C. A. Thekkath.

Startrack: a framework for enabling track-based applications. InMobiSys ’09:
Proceedings of the 7th international conference on Mobile systems, applications,
and services, pages 207–220, New York, NY, USA, 2009. ACM.

[2] D. Ashbrook and T. Starner. Using gps to learn significantlocations and predict
movement across multiple users.Personal Ubiquitous Comput., 7(5):275–286,
2003.

[3] M. Azizyan, I. Constandache, and R. Roy Choudhury. Surroundsense: mobile
phone localization via ambience fingerprinting. InMobiCom ’09: Proceedings of
the 15th annual international conference on Mobile computing and networking,
pages 261–272, New York, NY, USA, 2009. ACM.

[4] Y.-C. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm. Accuracy characteriza-
tion for metropolitan-scale wi-fi localization. InMobiSys ’05, pages 233–245,
New York, NY, USA, 2005. ACM.

[5] I. Constandache, R. R. Choudhury, and I. Rhee. Towards mobile phone localiza-
tion without war-driving. InINFOCOM’10: Proceedings of the 29th conference
on Information communications, pages 2321–2329, Piscataway, NJ, USA, 2010.
IEEE Press.

[6] I. Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury,and L. P. Cox. Enloc:
Energy-efficient localization for mobile phones. InINFOCOM, pages 2716–
2720. IEEE, 2009.

[7] J. Froehlich, M. Y. Chen, I. E. Smith, and F. Potter. Voting with your feet: An in-
vestigative study of the relationship between place visit behavior and preference.
In Ubicomp ’06, pages 333–350, 2006.

[8] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt.Micro-blog: sharing
and querying content through mobile phones and social participation. InMobiSys
’08, pages 174–186. ACM, 2008.

[9] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding individual
human mobility patterns.Nature, 453(7196):779–782, June 2008.

[10] R. Hariharan and K. Toyama. Project lachesis: Parsing and modeling location
histories. In M. J. Egenhofer, C. Freksa, and H. J. Miller, editors, GIScience,
volume 3234, pages 106–124. Springer, 2004.

[11] J. Hightower, S. Consolvo, A. LaMarca, I. E. Smith, and J. Hughes. Learning
and recognizing the places we go. InUbicomp ’05, pages 159–176, 2005.

[12] P. Jaccard. The distribution of the flora in the alpine zone. New Phytologist,
11(2):37–50, 1912.

[13] J. H. Kang, W. Welbourne, B. Stewart, and G. Borriello. Extracting places from
traces of locations. InWMASH ’04, pages 110–118, New York, NY, USA, 2004.
ACM.

[14] D. H. Kim, J. Hightower, R. Govindan, and D. Estrin. Discovering semantically
meaningful places from pervasive rf-beacons. InUbicomp ’09: Proceedings of

the 11th international conference on Ubiquitous computing, pages 21–30, New
York, NY, USA, 2009. ACM.

[15] M. B. Kjaergaard, J. Langdal, T. Godskand, and T. Toftkjaer. Entracked: energy-
efficient robust position tracking for mobile devices. InMobiSys ’09: Proceed-
ings of the 7th international conference on Mobile systems, applications, and
services, pages 221–234, New York, NY, USA, 2009. ACM.

[16] N. E. Klepeis, W. C. N. WC, W. R. O. WR, and et al. The national human ac-
tivity pattern survey (nhaps): A resource for assessing exposure to environmen-
tal pollutants. Journal of Exposure Analysis and Environmental Epidemiology,
11(3):231–252, 2001.

[17] K. Laasonen, M. Raento, and H. Toivonen. Adaptive on-device location recog-
nition. In Pervasive ’04, pages 287–304, 2004.

[18] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma. Mining user similarity
based on location history. InGIS, page 34, 2008.

[19] L. Liao, D. Fox, and H. Kautz. Extracting places and activities from gps traces
using hierarchical conditional random fields.Int. J. Rob. Res., 26(1):119–134,
2007.

[20] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy aware lo-
calization for mobile devices. InProceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys’10), 2010.

[21] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell. Soundsense:
scalable sound sensing for people-centric applications onmobile phones. In
MobiSys ’09: Proceedings of the 7th international conference on Mobile systems,
applications, and services, pages 165–178, New York, NY, USA, 2009. ACM.

[22] P. J. Ludford, D. Frankowski, K. Reily, K. Wilms, and L. Terveen. Because i
carry my cell phone anyway: functional location-based reminder applications.
In CHI ’06, pages 889–898. ACM, 2006.

[23] N. Marmasse and C. Schmandt. Location-aware information delivery with com-
motion. InHUC ’00, pages 157–171. Springer-Verlag, 2000.

[24] P. Nurmi and S. Bhattacharya. Identifying meaningful places: The non-
parametric way. In J. Indulska, D. J. Patterson, T. Rodden, and M. Ott, editors,
Pervasive, volume 5013 ofLecture Notes in Computer Science, pages 111–127.
Springer, 2008.

[25] J. Paek, J. Kim, and R. Govindan. Energy-efficient rate-adaptive gps-based posi-
tioning for smartphones. InProceedings of the 8th International Conference on
Mobile Systems, Applications, and Services (MobiSys’10), June 2010.

[26] S. Reddy, K. Shilton, J. Burke, D. Estrin, M. Hansen, andM. Srivastava. Using
context annotated mobility profiles to recruit data collectors in participatory sens-
ing. In LoCA ’09: Proceedings of the 4th International Symposium on Location
and Context Awareness, pages 52–69, Berlin, Heidelberg, 2009. Springer-Verlag.

[27] T. Sohn, K. A. Li, G. Lee, I. E. Smith, J. Scott, and W. G. Griswold. Place-its: A
study of location-based reminders on mobile phones. In M. Beigl, S. S. Intille,
J. Rekimoto, and H. Tokuda, editors,Ubicomp ’05, volume 3660 ofLecture
Notes in Computer Science, pages 232–250. Springer, 2005.

[28] C. Song, Z. Qu, N. Blumm, and A.-L. Barabsi. Limits of predictability in human
mobility. Science, 327(5968):1018–1021, Feb. 2010.

[29] N. Song. Discovering user context with mobile devices:location and time. The-
sis, Massachusetts Institute of Technology. Dept. of Electrical Engineering and
Computer Science., 2006.

[30] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan,
S. Toledo, and J. Eriksson. Vtrack: accurate, energy-awareroad traffic delay
estimation using mobile phones. InSenSys ’09: Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems, pages 85–98, New York,
NY, USA, 2009. ACM.

[31] N. Toyama, T. Ota, F. Kato, Y. Toyota, T. Hattori, and T. Hagino. Exploiting
multiple radii to learn significant locations. InLoCA ’05, pages 157–168, 2005.

[32] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B.Krishnamachari,
and N. Sadeh. A framework of energy efficient mobile sensing for automatic
user state recognition. InMobiSys ’09: Proceedings of the 7th international
conference on Mobile systems, applications, and services, pages 179–192, New
York, NY, USA, 2009. ACM.

[33] G. Yang. Discovering significant places from mobile phones - a mass market
solution. In R. Fuller and X. D. Koutsoukos, editors,MELT, volume 5801 of
Lecture Notes in Computer Science, pages 34–49. Springer, 2009.

[34] Z. Zhuang, K.-H. Kim, and J. P. Singh. Improving energy efficiency of location
sensing on smartphones. InMobiSys ’10: Proceedings of the 8th international
conference on Mobile systems, applications, and services, pages 315–330, New
York, NY, USA, 2010. ACM.

56


