
INFR11102: Computational Complexity 15/10/2019

Lecture 9: More on NP-completeness; Ladner’s theorem
Lecturer: Heng Guo

1 More on NP-completeness
We will show that from 3-Sat, it is relatively easy to derive NP-hardness for other combina-
torial problems.

For an optimization problem, we often consider their “threshold” version as the decision
problem. Recall that for a graph G = (V,E), a vertex cover C ⊆ V is a subset of vertices so
that every edge is adjacent to at least one vertex in C.

Name: VC
Input: A graph G and a number k.
Output: Does G contain a vertex cover of size at most k?

Theorem 1. VC is NP-hard.

Once again, we will build a reduction, this time from 3-Sat to VC. The key to this
reduction, is to transform the “local” constraint in 3-Sat to the local constraint in VC.

Proof. Given a 3-CNF formula φ with n variables and m clauses, we construct a graph
Gφ = (V,E) as follows. We introduce two vertices vxi

and vxi
for each variable xi, and

connect the two. To simplify the notation, we will just call the two vertices xi and xi. For
each clause cj = ℓj,1 ∨ ℓj,2 ∨ ℓj,3, we introduce a vertex for each of its literals, and connect all
of them pairwise. (Rewrite ℓ1 = ℓ1 ∨ ℓ1 ∨ ℓ1 and ℓ1 ∨ ℓ2 = ℓ1 ∨ ℓ1 ∨ ℓ2 so that every clause
has three literals.) In addition, connect all literals to the corresponding variable vertex. For
example, if ℓ4,1 is x5, then (ℓ4,1, x5) ∈ E. So |V | = 2n+ 3m and |E| = n+ 6m.

Now, we should step back and think about the construction. To get a small vertex cover,
we want to occupy as few vertices as possible. We have to cover at least one of (xi, xi). We
also have to cover at least two of ℓj,1, ℓj,2, and ℓj,3 for a clause cj. Hence, the vertex cover
has size at least n+ 2m.

If φ has a satisfying assignment σ, then we interpret σ as a vertex cover as follows. We
cover xi or xi according to σ(xi)’s value. We also cover false literals in a clause. Since σ is
a satisfying assignment, there are at most two literals covered this way. If a clause triangle
still has one uncovered edge, then we cover one of its endpoints. Repeat this until no triangle
contains uncovered edges. There is one vertex per each triangle that is uncovered, and it
corresponds to a true literal. So the size of the cover is n+ 2m.

We have covered all variable pairs and all clause triangles this way. The only edges in
question are those connecting the uncovered vertex in each triangle, and the corresponding

1

variable vertex. We know that the uncovered literal must be true, and hence the corre-
sponding variable vertex is covered. So all edges are fine and we have a vertex cover of size
n+ 2m.

On the other hand, suppose we do have a vertex cover of size n+2m. As we have argued
earlier, it must contain exactly one for each pair of variable vertices, and two of every clause
triangle. We interpret the covered variable vertex as true. If a clause is not satisfied, then all
literals must be false. Hence, the vertex uncovered in the triangle is connected to a uncovered
variable vertex, contradicting to the assumption of a vertex cover.

In summary, our reduction takes φ, and outputs (Gφ, n + 2m), which clearly can be
computed in polynomial time. The clause φ is satisfiable if and only if Gφ has a vertex cover
of size at most n+ 2m.

From VC, we can further show other problems to be NP-hard. For a graph G = (V,E),
an independent set I ⊆ V is a subset of vertices so that no two vertices in I are adjacent.

Name: IndSet
Input: A graph G and a number k.
Output: Does G contain an independent set of size at least k?

Theorem 2. IndSet is NP-hard.

Proof. We show a reduction VC ≤p IndSet. The graph G = (V,E) is kept as the same,
but for the input k, we replace it with n− k. It is easy to see that, for a vertex cover C of
size t, its complement C := V \ C is an independent set of size n− k. Hence the reduction
is valid.

For a graph G = (V,E), a clique C ⊆ V is a subset of vertices so that any two vertices
in C are adjacent.

Name: Clique
Input: A graph G and a number k.
Output: Does G contain a clique of size at least k?

Theorem 3. Clique is NP-hard.

Proof. We reduce IndSet ≤p Clique. Given G = (V,E), we construct G′ = (V,E), where
E is the complement of E. Namely, (i, j) ∈ E if and only if (i, j) ̸∈ E. It is easy to verify
that an independent size in G is a clique in G′. Hence the reduction is valid.

1.1 Hamiltonian cycle
“Non-local” problems can also be NP-hard. A Hamiltonian cycle is a cycle where all vertices
is visited exactly once.

2

Name: HC
Input: A graph G.
Output: Does G contain a Hamiltonian cycle?

In other words, HC is asking whether the longest cycle in G has length n. This problem
is “non-local” in the sense that the constraint involves all vertices (a.k.a. global).

Theorem 4. HC is NP-hard.

Proof. We will reduce from VC.
Given G = (V,E), an instance of VC, we construct a graph G′. For each e ∈ E, we

replace it by a “gadget” shown in Figure 1. The gadget in Figure 1 contains three possible

a b

c d

Figure 1: A gadget from VC to HC

traversals. Either in order a-b-d-c or in order b-a-c-d, or in two completely separate thread
from a to c and b to d. For an edge (u, v) ∈ E, after the replacement, we use the a-c thread
to represent the vertex u and the b-d thread to represent v. After replacing all edges, we
connect all threads corresponding to the same vertex in some arbitrary order.

Finally, for the input k, we introduce k new vertices x1, · · · , xk, and connect them to the
start and finish of every vertex thread.

Now we claim that if there is a vertex cover C = {v1, · · · , vk} of size k in G, there must
be a Hamiltonian cycle in G′. The point is that for an edge (u, v), if u ∈ C but v ̸∈ C, then
we go through a-b-d-c thread so that a and c are the in and out, and similarly for the case
where v ∈ C but u ̸∈ C. If both u and v are in C, then we use the two separate traversals.
In summary, u ∈ C if and only if its corresponding two vertices are the in/out in the gadget
in Figure 1. The Hamiltonian cycle starts at x1, goes through all threads associated with v1
according to the rule above, and arrives in x2. Then we go through all threads associated
with v2 to x3, so on and so forth, eventually returning to x1.

3

On the other hand, if there is a Hamiltonian cycle in G′, it has to include all vertices
in {x1, · · · , xk}. However, by construction, for each visit of xi, we can only traverse one
thread that corresponds to some vertex. Hence, we will traverse exactly k threads in the
Hamiltonian cycle, and we claim that these vertices are a vertex cover in G. This is because,
if an edge, say (u, v) is not covered, then the Hamiltonian cycle in G′ must have missed some
vertices, which is impossible.

2 Ladner’s theorem (non-examinable)
In view of NP-complete problems, it is natural to wonder whether we have a dichotomy
between P and NP-complete, namely whether NP \ P consists of only NP-complete problems,
if P ̸= NP. The answer, given by Ladner [Lad75], shows that problems of intermediate
complexity exist.

Theorem 5 (Ladner). If P ̸= NP, then there exists L ∈ NP \ P and L is not NP-complete.

In fact, Ladner showed a stronger result, that there is an infinite hierarchy between
P and NP-complete, assuming P ̸= NP. The construction of L, as we will see, is rather
artificial. There are a few natural candidate intermediate problems, such as Factoring
and GraphIsomorphism, which we will see later.

The basic idea is to take a CNF formula φ, encoded as a binary string, and pad it
artificially so that the input length is f(n) instead of the original n. The longer we pad, the
easier the problem becomes. If f(n) is exponentially large, then of course the new problem
can be solved in time polynomial in f(n). So to get intermediate complexity, we would
want f(n) to be larger than polynomial, but smaller than exponential. The difficulty is to
formalize this intuition, and it will be a diagonalisation argument.

To formalize this intuition, define

L := {φ01f(n)−|n|−1 | φ ∈ Sat and |φ| = n},

where f(n) will be defined next.
Suppose we enumerate all TMs determining all languages in P, M1,M2, · · · . In particular,

we can assume that Mi runs in time ni. Define f(n) = ng(n) where g(n) is defined recursively
as follows:

• g(1) = 1;

• Suppose g(n − 1) = i. For g(n), we enumerate all input x of size at most log n. Let
g(n) = i if Mi agrees with L for all such x, and g(n) = i+ 1 otherwise.

Notice that since we only check logarithmic size x, g(n) and f(n) can be computed in
polynomial time in n. (Since g(n) is recursively defined, one actually needs to solve a
recurrence to verify this claim.) It implies that L ∈ NP.

We claim that L ̸∈ P. If so, L = L(Mi) for some i and thus g(n) ≤ i. However, g(n) is
non-decreasing, so g(n) = c and f(n) = nc for some constant c ≤ i and all large enough n.

4

Thus Sat can be determined in time (f(n))i = nci which is still a polynomial. It contradicts
to the assumption that P ̸= NP.

As a consequence, g(n) must be unbounded.
The more complicated part is to verify that L is not NP-complete. Suppose otherwise it

is, and therefore there is a reduction, say R, from Sat to L. Namely, φ ∈ Sat ⇔ R(φ) ∈ L.
Suppose |R(φ)| ≤ nj for some constant j. We then give a polynomial-time to solve Sat,

again contradicting to our assumption. Since g(n) is unbounded, there exists n0 such that
for all n ≥ n0, g(n) > j. We can solve all formulas up to size n0 by brute force.

For a formula φ of size n ≥ n0, we run the reduction R(φ), which yields a string
ψ01f(m)−m−1 where m = |ψ| such that φ ∈ Sat if and only if ψ ∈ Sat. (If R(φ) does
not have this form then we immediately know that φ ̸∈ Sat.) In particular, this implies
that |R(φ)| = f(m) ≤ nj. If m ≥ n ≥ n0, then f(m) = mg(m) > mj ≥ nj, a contradiction.
Hence m < n, then we run our algorithm recursively on ψ, which has a smaller size. This
yields a polynomial time algorithm, contradicting to the assumption that P ̸= NP.

The “padding” proof above is an unpublished result by Russell Impagliazzo. An al-
ternative presentation can be found in [AB09, Theorem 3.3]. Another (original) proof via
“punching holes” can be found in [Pap94, Theorem 14.1]. Both proofs (including the one we
talked about here) can also be found in [DF03, Appendix A].
Remark (Bibliographic). Relevant chapters are [AB09, Chapter 3.3, 2.5] and [Pap94, Chap-
ter 10, 14.1].

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[DF03] Rodney G. Downey and Lance Fortnow. Uniformly hard languages. Theor. Comput.
Sci., 298(2):303–315, 2003.

[Lad75] Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM,
22(1):155–171, 1975.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

5

	More on NP-completeness
	Hamiltonian cycle

	Ladner's theorem (non-examinable)

