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1 Cook-Levin Theorem (proof is non-examinable)
LNP is not a very useful NP-complete problem. The surprising discovery in the 70s, by Stephen
Cook [Coo71] and Leonid Levin [Lev73], independently, is that the following natural problem
is NP-complete.

Name: Sat
Input: A CNF formula φ
Output: Is φ satisfiable?

Recall that a CNF (Conjunction Normal Form) formula is a conjunction of a number of
disjunction clauses, like, (x1 ∨ x2)∧ (x1 ∨ x3 ∨ x4)∧ · · · . To satisfy a CNF formula, we need
to find an assignment so that all clauses are satisfied.

Given an assignment σ : X → {0, 1}, where X is the variable set, it is straightforward to
check whether σ satisfies φ. This means Sat ∈ NP. (Recall the verification characterization
of NP.)

Theorem 1 (Cook-Levin). Sat is NP-complete.

Proof sketch. The basic goal of the proof is that, given a polynomial time NTM N and an
input s, the computation of N on s can be encoded into a Boolean formula φs so that N
accepts s if and only if φs is satisfiable. Additionally, the length of the formula is polynomial
if the machine runs in polynomial time.

We may assume that N is single-tape, since it can simulate k-tapes NTMs with at most
quadratic slowdown. We may also assume that the tape is one-sided, since we can always
“fold” the tape by enlarging the alphabet size. Moreover, we assume that N always has 2
choices at every step. This is okay since we can always add t − 2 new states to mimic a t
choices non-deterministic step. If there is only one choice, then we consider the two coincide.
Now the non-deterministic choices are simply a 0, 1-string: c = c1, c2, · · · , cT where T is the
running time.

We form a T -by-O(T ) “computational table” as follows. Rows are time indices, and each
row is the encoding of the configuration at the corresponding time. So the ith row encodes
the configuration at time i. If we fix the choices c, then the computation of N on x is
completely deterministic and this table can be constructed. Equivalently, we may add an
additional column of the table to reflect the choices c.

We introduce one variable x for each cell of this conceptual table. Thus, we have O(T 2)
variables. We introduce subformulas to verify the following three things,
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1. Every row is a valid encoding;

2. The initial row is correct;

3. The final row is accepting;

4. Every two consecutive rows are a valid transition.

Here by “verify” we mean that the subformula ψ is true if and only if the property to be
verified is true.

It is tedious to go through all the constructions. The crucial part of the construction of
φ is how to encode the transition function, namely to verify that two consecutive rows are
valid. This is possible because computation is local. Basically, to determine whether two
such rows are “compatible”, we only need to look at 12 + 2 log |Q| + 1 cells, 12 for the cell
contents and positions of the heads, 2 log |Q| to check the consecutive states, and 1 extra
to check ci. We know that any Boolean function can be encoded as a (possibly exponential
size) CNF. The saving grace is that exponential of a constant is still a constant. We do this
for every 3 consecutive cells of the tapes, resulting in O(T ) many clauses.

As of the total size of φ, notice that T is a polynomial in n, and thus O(T 2) is still a
polynomial. The number of clauses, as explained above, is also bounded by a polynomial (in
fact also O(T 2)).

Full proof details can be found in [AB09, Theorem 2.10] or [Pap94, Theorem 8.2], as well
as in many other books.

2 3-Sat
After Cook’s paper [Coo71] published, Dick Karp immediately realized that the notion of
NP-hardness captures a large amount of intractable combinatorial optimization problems. In
[Kar72], he showed 21 problems to be NP-complete. This list quickly increased and by the
time of 1979, Garey and Johnson [GJ79] wrote a whole book on NP-complete problems. This
book has became a classic nowadays, and thousands of NP-hard problems were discovered
during the past four decades. These intractable problems spread over all kinds of areas, even
beyond computer science.

The canonical hard problem LNP defined last time is not very useful to show NP-hardness
of other problems, and Sat is much more handier in this sense. What is even more useful is
the following variant of Sat. Let k-CNF formulas be those whose clauses involve at most k
literals. For example, (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x5) is a 4-CNF.

Name: k-Sat
Input: A k-CNF formula φ.
Output: Is φ satisfiable?

Theorem 2. 3-Sat is NP-complete.
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Proof. We give a reduction Sat ≤p 3-Sat. Namely, given a CNF formula φ, we construct
(in polynomial time) another 3-CNF formula φ′, such that φ is satisfiable, if and only if φ′

is satisfiable.
The only thing we need to do is for every clause c in φ, we replace it by a conjunction of

clauses of size at most 3 and preserve satisfying assignments. We do this inductively. For a
clause c of size k > 3, say its first two literals are x1 and x2. So c has the form x1 ∨ x2 ∨ c′,
where c′ is a clause of size k− 2. We introduce a new variable y1 and consider the following
formula: φc := (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ c′).

• If an assignment σ satisfies c, then at least one of x1, x2, and literals in c′ is true under
σ. Hence, we can assign y1 accordingly to make φc true. For example, if x1 is true,
then we assign y1 to be false.

• If an assignment σ satisfies φc, then depending on y1’s value, at least one of x1 ∨ x2
and c′ is true. Hence, c is satisfied under σ.

In this construction, the sizes of the new clauses (namely, x1 ∨ x2 ∨ y1 and y1 ∨ c′) decrease
at least 1. To continue, we apply this construction to y1 ∨ c′ and reduce clause sizes by 1
again (if still > 3). (Or equivalently, invoke the induction hypothesis.)

We finish with a 3-CNF formula φ′ which contains a number of new variables, and φ is
satisfiable if and only if φ′ is. In fact, if there are at most k variables in each clause in φ, and
there are n variables and m clauses in φ, then there are ≤ (k−2)m clauses and ≤ n+(k−3)m
variables in φ′. It is also easy to see that the construction only takes polynomial time.

There are two key points of the reduction above: 1. local transformations (from a clause
to a conjunction of clauses, without affecting other clauses); 2. introducing new variables.

Since trivially 3-Sat ≤p k-Sat for any k ≥ 3, k-Sat is NP-hard for any k ≥ 3. On the
other hand, the proof above does not work for 2-Sat. In fact, 2-Sat ∈ P.
Remark (Bibliographic). These reductions were first shown by Karp [Kar72]. Relevant chap-
ters are [AB09, Chapter 2] and [Pap94, Chapter 8 and 9].
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