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1 More on NL

Last time we have shown that Conn is NL-complete. It implies that if Conn ∈ L, then
NL = L.

A natural variant of Conn is the undirected graph version.

Name: UConn
Input: A undirected graph G with two vertices s and t.
Output: Are s and t connected?

This is the complete problem for a class called SL (symmetric log-space), for which the
formal definition is quite complicated. In fact, the motivation of defining SL [LP82] is to
find a complexity class to place UConn. Two decades later, an amazing result by Omer
Reingold [Rei08] shows that UConn ∈ L and thus SL = L. (Very roughly speaking, it is
achieved by derandomizing random walks.)

However, we are still unable to resolve whether NL ?
= L.

1.1 NL = coNL (non-examinable)
Another variant of Conn, namely its complement, is the following.

Name: Conn
Input: A directed graph G with two vertices s and t.
Output: Is there no path in G from s to t?

Neil Immerman [Imm88] and Róbert Szelepcsényi [Sze88] independently proved the fol-
lowing theorem.

Theorem 1. Conn ∈ NL.

We will not prove the theorem here, but we should step back and take a minute to think
about the meaning of this theorem.

A naive NL algorithm for Conn is to take the same NTM for Conn but flip its answers.
Thus, we will accept, if there exists a wrong guess connecting s to t. However, for any (s, t),
there exists a wrong guess, and we will end up accepting everything!
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Essentially, if (G, s, t) is in Conn, then for any sequence of vertices of G, it cannot
connect s to t. There is a universal quantifier “for any” in the statement. However, recall
the verification definition of NP, what an NTM is capable of doing is to state an existential
quantifier “there exists …”. Thus, Theorem 1 is non-trivial in that it implicitly transforms
the universal quantifier into an existential one.

Without the space requirement, this can actually be done easily. For example, if there
exists a cut1 (X,Y ) of G, such that s ∈ X and t ∈ Y , then we know that s and t are
disconnected. However, a cut cannot be stored in logarithmic space. The proof of Theorem 1
uses a method called inductive counting.

The idea is that, if we know how many vertices are reachable from s, then we can simply
guess connectivity for every vertex, verify the guess, and then verify the total number is
correct. The ability to verify the guess makes sure that we never overestimate the number
of reachable vertices. Hence, if the total number in the end is correct, then we know all our
guesses are correct, and thus know whether t is among reachable vertices. To find out this
number, let Ck be the number of vertices that can be reached within k steps. To compute
Cn, we do it inductively from C1 to Cn. If we know Ck, then we can verify whether any
vertex v ∈ V can be reached from s within k steps by guessing and checking. Thus we can
use guessing and checking again to check whether any vertex v ∈ V can be reached from s
within k + 1 steps. Thus we can get the count Ck+1 and we inductively continue. This is a
very non-intuitive algorithm and it exploits the power of non-determinism heavily. Full proof
details can be found in [AB09, Theorem 4.20], [Pap94, Theorem 7.6], or the Supplementary
Note on the course website.

The class of negations of languages from a complexity class C is often denoted co·C.
Formally, denote by L the complement language of L, and

coNL := {L | L ∈ NL}.

It is easy to see that Conn is complete for coNL. Thus, Theorem 1 implies that coNL = NL.
However, it is still an important open question whether NP ?

= coNP.
We note that co·C is not the complement of C in the set-theoretic sense, namely co·C ̸= C.

Note that C ∩ C = ∅, but NL = coNL (by Theorem 1) and P ⊆ NP ∩ coNP. Also, trivially,
co·P = P by flipping the accepting / rejecting states.

2 NP-completeness
One of the most important technique in complexity theory is reductions. We have seen
log-space reductions ≤ℓ last time.

For problems in NP, we will consider the following notion, called Karp reductions or
polynomial-time many-one reductions.

Definition 1 (Karp reductions). A language A is Karp reducible to another language B,
denoted A ≤p B, if there is a function f : Σ∗ → Σ∗ such that,

1A partition (X,Y ) of the vertices so that there is no edge from X to Y .
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• x ∈ A ⇔ f(x) ∈ B;

• f can be computed in polynomial time.

By Definition 1, if A ≤p B and B ∈ P, then A ∈ P. Also, if A ≤p B and B ≤p C, then
A ≤p C.

We now proceed to define NP-completeness.

Definition 2 (NP-completeness). A language A is NP-hard (under Karp reductions) if for
any B ∈ NP, B ≤p A.

A is NP-complete if A ∈ NP and A is NP-hard.

NP-complete problems are the most difficult ones among all problems in NP. By Defini-
tion 2, if there exists a NP-complete language A ∈ P, then P = NP!

Definition 2 sounds like very demanding, but NP-complete problems do exist. The canon-
ical one is the following:

Name: LNP

Input: A non-deterministic TM N , an input x, and a unary string 1t.
Output: Does N accept x within t steps?

Proposition 2. LNP is NP-complete.

Proof. It is easy to see that LNP ∈ NP. Given N , x and 1t, we non-deterministically simulate
N on x for t steps and output the same bit.

Next we show LNP is NP-hard. Let A ∈ NP be a language computed by a NTM NA in
time c1n

c2 for constants c1 and c2 ≥ 1. Our reduction algorithm, given x, simply outputs
(NA, x, 1

c1nc2 ). Then let us check Definition 1:

• x ∈ A if and only if (NA, x, 1
c1nc2 ) ∈ LNP by the definition of LNP;

• the reduction takes time O(nc2) (mostly to write down 1c1n
c2 ).

The 1t part of the input is to make sure that LNP is in NP. If the input t was in binary,
namely its size is log t, then the simulation would take some polynomial time in t, which is
exponential in the input size, log t.

It is somewhat straightforward to design complete languages like this for other complexity
classes, such as PSpace or L, as well.
Remark (Bibliographic). Relevant chapters are [AB09, Chapter 2] and [Pap94, Chapter 8 and 9].
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