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Lecture 6: Savitch’s Theorem

Lecturer: Heng Guo

1 Savitch’s theorem

In [Sav70], Savitch proves the following theorem.

Theorem 1 ([Sav70]). Let S(n) > logn be a space-constructible function. Then
NSpace[S(n)] C DSpace[(S(n))?.
The crux of Savitch’s theorem is a space efficient algorithm for the following problem.

Name: CONN
Input: A directed graph G = (V, E') with two vertices s and t.
Output: Is there a path from s to ¢t in G?

We may assume some simple representation of the input, like the adjacency matrix, which
has size O(|V[?).

This is one of the most basic problems in an algorithm class. We all know that we can
solve it by, say, DFS or BFS. However, standard DFS or BFS would record 1 bit for each
vertex whether it has been visited, thus requiring Q(n) space where n = |V|.! Savitch,
instead, gives a space-efficient version.

Theorem 2 ([Sav70]). CONN € DSpace|(logn)?].

So we know CONN € DTime[n] by BFS/DFS, and CONN € DSpace|(log n)?] by Theorem 2,
but we do not know whether the two can be achieved at the same time.

Savitch’s algorithm is a recursive procedure REACH(u, v, ) given in Algorithm 1, where
1(A) is the indicator function of an event A. Namely, 1(A) = 1 if A is true, and = 0
otherwise. Clearly CONN can be solved by REACH(s, t,n) where n = |V/].

The basic idea is the following: we enumerate all possible “middle point” w of v and v,
and recursively determine whether u and v are both connected to w at most ¢/2 steps. Such
w exists, if and only if, © and v are connected by a path of length at most ¢. This shows the
correctness of Algorithm 1.

We claim the space complexity of Algorithm 1 is O((logn)?). This is because, the recur-
sion depth of Algorithm 1 is at most O(logn). At each level of the recursion, we need to

!Technically, the input size of a graph G can be quadratic in the number of vertices. However, since we
are mostly concerned with log-spaces or polynomial time, it does not make a difference, up to constants.



Algorithm 1 REACH(u, v, {)

Input: Graph G = (V| E), two vertices u and v, and an integer /.
Output: Is there a path from u to v of length at most ¢7
if /=1, then
return 1(u=v or (u,v) € E).
end if
for w eV, do
if REACH(u, w, [£/2]) =1 and REACH(w, v, [¢/2]) = 1, then
return 1.
end if
end for
return 0.

store information about u, v, w, and ¢, each of which requires at most logn bits. Thus, in
total, we need to store O(logn) bits at each of the O(logn) recursion levels, resulting in a
total space complexity O((logn)?) of Algorithm 1.

In general, recursive procedures are usually space-efficient. The total space is O(d - s),
where d is the recursion depth and s is the number of bits required for each level. Of course
one can easily unravel the recursion using, for example, stacks, but the recursive version is
often easier to describe and analyze.

To prove Theorem 1, we want to apply Algorithm 1 to the configuration graph of the
NTM. However, to explicitly construct the configuration graph would require too much
space. The saving grace is that Algorithm 1 only requires to know local structure of the
configuration graph.

Proof of Theorem 1. For any L € NSpace[S(n)], suppose it is computed by an NTM N with
S(n) space. For an input x where n = |z|, we invoke Algorithm 1 with G = G, the
configuration graph, u being the initial configuration, v being the accepting configuration,
and ¢ = 2°5(") the maximum number of total configurations, where ¢ is a constant depending
only on N. Note that the accepting configuration may not be unique in Gy ., but this is not
an issue since we can simply identify all of them. There are no outgoing arcs from accepting
configurations anyways.

The only subtlety is that we cannot afford to construct the whole Gy ,. In the execution
of Algorithm 1, the enumeration step will go over all possible configurations up to space
S(n). If there is a query whether u = v or (u,v) € E, we can easily determine it by checking
the transition function of N. This takes at most constant bits.

Since the size of Gy, is at most £ = 2¢5(") the total space complexity of this algorithm
is (log () = O((S(n))?).

Space constructibility is required since we need to know an upper bound of the space
used in order to enumerate all possible configurations. [

An immediate consequence of Theorem 1 is that PSpace = NPSpace. However, it is not
clear that whether NL = L. Theorem 1 only implies that NL C DSpace[(logn)?].
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2 Log-space computation

It is clear that CONN € NL. We will show that CONN, in fact, is a NL-complete problem, in
the sense that if we can solve CONN in O(logn) space, then we can solve any problem in NL
in O(logn) space. In other words, if CONN € L, then L = NL.

Definition 1. A language B is log-space reducible to a language A, denoted B <, A, if,
there is a TM M that uses O(logn) space and for any x € B < M(z) € A.

A language A is NL-hard if for every language B € NL, B <, A.

A language A is NL-complete if it is NL-hard and A € NL.

Remark. In Definition 1, we use M (z) to denote the output of M on input z, which, in this
case, is not necessarily 0/1. Recall that in space complexity, we only count the size of the
work tape. The output of M does not need to be of logarithmic size.

The intuition for the notation B <, A is that B is easier than A — if we can solve A, we
can solve B.

Theorem 3. CONN is NL-complete.

Proof. It is easy to see that CONN is in NL, since we can simply guess the path.

For a language B € NL, let B = L(N) for an NTM N. Given an input x, the reduction
simply output the configuration graph Gy ., along with its starting and accepting configu-
rations. The space used to construct Gy, is O(logn). For example, we can first write down
all possible configurations, then for each configuration, go through all other configurations
to see what are its neighbours. The space needed is proportional to the size of a single
configuration. O

Remark (Bibliographic). Savitch’s Theorem can be found in [AB09, Theorem 4.14] and
[Pap94, Theorem 7.5]. Relevant chapters are [AB09, Chapter 4] and [Pap94, Chapter 7.3].
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