
INFR11102: Computational Complexity 01/10/2019

Lecture 5: Non-determinism
Lecturer: Heng Guo

1 Non-determinism
Last time we defined polynomial-time P as the class for “efficient” computation. Polynomial-
time is “robust” in many senses. For example, unlike linear-time, it is closed by taking
subroutines.

Another important notion regarding the model of computation is called non-determinism.
However, we will define NP in a non-traditional (but equivalent) way first. Let us motivate
it by the following example. Recall that a proper colouring of a graph is one where no edge
is monochromatic.

Name: 3-Col
Input: A graph G = (V,E).
Output: Is G 3-colourable?

The obvious algorithm is to enumerate all possible colourings, which would take O(m3n)
time, where n = |V | and m = |E|. Moreover, enumerating all colourings only requires O(n)
space, as we can erase the previous one once we move on to the next. There are faster
algorithms, but no polynomial-time one is known. However, there is also no proof that it
does not have one. Namely, it is open whether 3-Col ∈ P? On the other hand, if we are
given the graph G, and a colouring σ : V → {0, 1, 2}, then we can easily verify whether this
colouring σ is valid — we simply only check whether every edge is monochromatic.

Definition 1. A language L is in the class NP if and only if there exists a deterministic
polynomial-time TM M (called the verifier) and a polynomial p(·) such that

1. Completeness: if x ∈ L, there exists y such that |y| ≤ p(|x|) and M(x, y) = 1;

2. Soundness: if x ̸∈ L, then for any y such that |y| ≤ p(|x|), M(x, y) = 0.

Such a y is called the certificate.

Clearly, 3-Col ∈ NP. In fact there are thousands of problems that are in NP but are still
not known to be in P. However, we know that if 3-Col ∈ P, then P = NP. This is captured
by the so-called “NP-completeness”, which we will cover later. The question whether P ?

= NP

is the most important problem in computer science.
The essence of NP is that we can efficiently verify the solutions. However, for a problem

to be in P, we need to be able to efficiently find the solution!

1

Here is another example for this verification vs. searching issue. Find an integer solution
to x3 + y3 + z3 = C for various integers C. Only very recently we have a positive answer for
all C ≤ 100. On Sep 6th 2019, Booker and Sutherland found that

42 = (−80538738812075974)3 + 804357581458175153 + 126021232973356313,

which is the last unsolved case for C ≤ 100. Furthermore, on Sep 17th 2019, they found
that

3 = 5699368212219623807203 + (−5699368211135653493509)3 + (−472715493453327032)3,

which is the third solution for C = 3 next to (1, 1, 1) and (4, 4,−5). Indeed, solutions
mentioned above are the only ones up to 1016 due to their search.

When you have a problem that seems hard to solve, it is not always NP-complete. Here
is a non-trivial example. Let G = (V,E) be a graph. A perfect matching (PM) is a subset
M ⊆ E of edges so that every vertex is adjacent to exactly one edge in M .

Name: PM
Input: A graph G.
Output: Does G have a perfect matching?

PM is indeed in P! This was the original topic of Edmonds [Edm65], where he gave a
polynomial-time algorithm to PM.

1.1 Non-deterministic Turing Machines
The traditional way of defining NP is via non-deterministic TMs (NTM). An NTM is the
same as a deterministic one, except that there are more than one possible moves at each step,
and an input is accepted if and only if there is a sequence of valid moves leading towards
the accepting state.

In other words, the configuration graph GM,x for a TM M has out degree 1 for all
vertices/configurations, whereas if M is NTM, then the out degree is not necessarily 1.1 For
an NTM N on input x, x is accepted if and only if there exists a path from q0 to qacc in
GN,x.

Similar to deterministic complexity classes, we may define non-deterministic complexity
classes, such as NTime[f(n)] and NSpace[f(n)], for languages that can be computed by NTMs
in O(f(n)) time or O(f(n)) space. An alternative way of defining NP is the following:

NP :=
∪
c∈N

NTime[nc].

Why are these two definitions equivalent? If L ∈ NP by some NTM N , then we construct
the verifier M in Definition 1 by simulating N and treat y as the non-deterministic choices

1In fact, we may assume that the out degree is always 2. This is because we can simply simulate a k-way
choice by a simple binary tree.

2

of N . Clearly y is at most polynomially long. If x is accepted by N , then such y must exist,
and if x is not, then y does not exist.

Conversely, if L has a verifier M , then we can construct an NTM N by simulating M
on just one input. Whenever M reads y, we list all possible choices of M in N by a non-
deterministic move.

Similar to NP, we define

NL := NSpace[log n];

NPSpace :=
∪
c∈N

NSpace[nc];

NExp :=
∪
c∈N

NTime[en
c

].

Since TM is a special case of NTM, we have that for any function f(·),

DTime[f(n)] ⊆ NTime[f(n)];

DSpace[f(n)] ⊆ NSpace[f(n)].

Recall from the last lecture

DSpace[S(n)] ⊆
∪
c∈N

DTime[2cS(n)]. (1)

We can strengthen (1) that

NSpace[S(n)] ⊆
∪
c∈N

DTime[2cS(n)],

by essentially the same argument — we construct the configuration graph and check whether
there is a path to the accepting state. This gives NL ⊆ P and NPSpace ⊆ Exp. Moreover,

NTime[f(n)] ⊆ DSpace[f(n)],

since, once again, we can construct the configuration graph and check the existence of an
accepting path in the O(f(n)) space. To summarize, we have the following relationship
among these complexity classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ NPSpace ⊆ Exp ⊆ NExp. (2)

Note the containment NP ⊆ PSpace is not obvious. However, this is correct, since, unlike
the P vs. NP problem, we actually know that PSpace = NPSpace. It is known as Savitch’s
theorem, which we will cover next time. Unfortunately, this is pretty much the only thing
we know stronger than (2).
Remark (Bibliographic). Relevant chapters are [AB09, Chapter 1] and [Pap94, Chapter 9].

3

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17(3):449–467, 1965.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

4

	Non-determinism
	Non-deterministic Turing Machines

