1 Non-determinism

Last time we defined polynomial-time \(P \) as the class for “efficient” computation. Polynomial-time is “robust” in many senses. For example, unlike linear-time, it is closed by taking subroutines.

Another important notion regarding the model of computation is called \textit{non-determinism}. However, we will define \(\mathsf{NP} \) in a non-traditional (but equivalent) way first. Let us motivate it by the following example. Recall that a proper colouring of a graph is one where no edge is monochromatic.

\textbf{Name:} 3-Col

\textbf{Input:} A graph \(G = (V, E) \).

\textbf{Output:} Is \(G \) 3-colourable?

The obvious algorithm is to enumerate all possible colourings, which would take \(O(m3^n) \) time, where \(n = |V| \) and \(m = |E| \). Moreover, enumerating all colourings only requires \(O(n) \) space, as we can erase the previous one once we move on to the next. There are faster algorithms, but no polynomial-time one is known. However, there is also no proof that it does not have one. Namely, it is open whether 3-Col \(\in \mathsf{P} \)? On the other hand, if we are given the graph \(G \), and a colouring \(\sigma : V \to \{0, 1, 2\} \), then we can easily verify whether this colouring \(\sigma \) is valid — we simply only check whether every edge is monochromatic.

\textbf{Definition 1.} A language \(L \) is in the class \(\mathsf{NP} \) if and only if there exists a deterministic polynomial-time TM \(M \) (called the verifier) and a polynomial \(p(\cdot) \) such that

1. \textbf{Completeness:} if \(x \in L \), there exists \(y \) such that \(|y| \leq p(|x|) \) and \(M(x, y) = 1 \);

2. \textbf{Soundness:} if \(x \notin L \), then for any \(y \) such that \(|y| \leq p(|x|) \), \(M(x, y) = 0 \).

Such a \(y \) is called the certificate.

Clearly, 3-Col \(\in \mathsf{NP} \). In fact there are thousands of problems that are in \(\mathsf{NP} \) but are still not known to be in \(\mathsf{P} \). However, we know that if 3-Col \(\in \mathsf{P} \), then \(\mathsf{P} = \mathsf{NP} \). This is captured by the so-called “\(\mathsf{NP} \)-completeness”, which we will cover later. The question whether \(\mathsf{P} = \mathsf{NP} \) is the most important problem in computer science.

The essence of \(\mathsf{NP} \) is that we can efficiently \textit{verify} the solutions. However, for a problem to be in \(\mathsf{P} \), we need to be able to efficiently \textit{find} the solution!
Here is another example for this verification vs. searching issue. Find an integer solution to \(x^3 + y^3 + z^3 = C\) for various integers \(C\). Only very recently we have a positive answer for all \(C \leq 100\). On Sep 6th 2019, Booker and Sutherland found that

\[
42 = (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3,
\]

which is the last unsolved case for \(C \leq 100\). Furthermore, on Sep 17th 2019, they found that

\[
3 = 569936821221962380720^3 + (-5699368211135653493509)^3 + (-472715493453327032)^3,
\]

which is the third solution for \(C = 3\) next to \((1, 1, 1)\) and \((4, 4, -5)\). Indeed, solutions mentioned above are the only ones up to \(10^{16}\) due to their search.

When you have a problem that seems hard to solve, it is not always \(\text{NP}\)-complete. Here is a non-trivial example. Let \(G = (V, E)\) be a graph. A perfect matching (PM) is a subset \(M \subseteq E\) of edges so that every vertex is adjacent to exactly one edge in \(M\).

Name: PM
Input: A graph \(G\).
Output: Does \(G\) have a perfect matching?

PM is indeed in \(\mathbb{P}\)! This was the original topic of Edmonds [Edm65], where he gave a polynomial-time algorithm to PM.

1.1 Non-deterministic Turing Machines

The traditional way of defining \(\text{NP}\) is via non-deterministic TMs (NTM). An NTM is the same as a deterministic one, except that there are more than one possible moves at each step, and an input is accepted if and only if there is a sequence of valid moves leading towards the accepting state.

In other words, the configuration graph \(G_{M,x}\) for a TM \(M\) has out degree 1 for all vertices/configurations, whereas if \(M\) is NTM, then the out degree is not necessarily 1.\(^1\) For an NTM \(N\) on input \(x\), \(x\) is accepted if and only if there exists a path from \(q_0\) to \(q_{\text{acc}}\) in \(G_{N,x}\).

Similar to deterministic complexity classes, we may define non-deterministic complexity classes, such as \(\text{NTime}[f(n)]\) and \(\text{NSpace}[f(n)]\), for languages that can be computed by NTMs in \(O(f(n))\) time or \(O(f(n))\) space. An alternative way of defining \(\text{NP}\) is the following:

\[
\text{NP} := \bigcup_{c \in \mathbb{N}} \text{NTime}[n^c].
\]

Why are these two definitions equivalent? If \(L \in \text{NP}\) by some NTM \(N\), then we construct the verifier \(M\) in Definition 1 by simulating \(N\) and treat \(y\) as the non-deterministic choices

\(^1\)In fact, we may assume that the out degree is always 2. This is because we can simply simulate a \(k\)-way choice by a simple binary tree.
of N. Clearly y is at most polynomially long. If x is accepted by N, then such y must exist, and if x is not, then y does not exist.

Conversely, if L has a verifier M, then we can construct an NTM N by simulating M on just one input. Whenever M reads y, we list all possible choices of M in N by a non-deterministic move.

Similar to NP, we define

$$
\mathsf{NL} := \mathsf{NSpace}[\log n];
$$

$$
\mathsf{NSpace} := \bigcup_{c \in \mathbb{N}} \mathsf{NSpace}[n^c];
$$

$$
\mathsf{NExp} := \bigcup_{c \in \mathbb{N}} \mathsf{NTime}[e^{nc}].
$$

Since TM is a special case of NTM, we have that for any function $f(\cdot)$,

$$
\mathsf{DTime}[f(n)] \subseteq \mathsf{NTime}[f(n)];
$$

$$
\mathsf{DSpace}[f(n)] \subseteq \mathsf{NSpace}[f(n)].
$$

Recall from the last lecture

$$
\mathsf{DSpace}[S(n)] \subseteq \bigcup_{c \in \mathbb{N}} \mathsf{DTime}[2^{cS(n)}]. \quad (1)
$$

We can strengthen (1) that

$$
\mathsf{NSpace}[S(n)] \subseteq \bigcup_{c \in \mathbb{N}} \mathsf{DTime}[2^{cS(n)}],
$$

by essentially the same argument — we construct the configuration graph and check whether there is a path to the accepting state. This gives $\mathsf{NL} \subseteq \mathsf{P}$ and $\mathsf{NSpace} \subseteq \mathsf{Exp}$. Moreover,

$$
\mathsf{NTime}[f(n)] \subseteq \mathsf{DSpace}[f(n)],
$$

since, once again, we can construct the configuration graph and check the existence of an accepting path in the $O(f(n))$ space. To summarize, we have the following relationship among these complexity classes:

$$
\mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{PSpace} \subseteq \mathsf{NSpace} \subseteq \mathsf{Exp} \subseteq \mathsf{NExp}. \quad (2)
$$

Note the containment $\mathsf{NP} \subseteq \mathsf{PSpace}$ is not obvious. However, this is correct, since, unlike the P vs. NP problem, we actually know that $\mathsf{PSpace} = \mathsf{NSpace}$. It is known as Savitch’s theorem, which we will cover next time. Unfortunately, this is pretty much the only thing we know stronger than (2).

Remark (Bibliographic). Relevant chapters are [AB09, Chapter 1] and [Pap94, Chapter 9].
References

