
INFR11102: Computational Complexity 26/09/2019

Lecture 4: Hierarchy theorems; Robust Complexity Classes
Lecturer: Heng Guo

1 Delayed Diagonalisation
Recall the time hierarchy theorem.

Theorem 1. Let T1(n) and T2(n) be two functions such that T2 is time-constructible. If
limn→∞

T1(n)2

T2(n)
= 0 (or equivalently, T1(n)

2 = o(T2(n))), then there exists a language L ∈
DTime[T2(n)]− DTime[T1(n)].

Last time we talked about why a naive diagonalisation argument does not work. We will
then use a technique called delayed diagonalisation.

We construct a TM A′ in Algorithm 1.

Algorithm 1 A′

Input: x ∈ {0, 1}∗.
Simulate Mx(x), where Mx is the TM encoded by x.
On a separate tape, run the clock of T2(|x|).
if T2(|x|) time is reached, then

return 1.
end if
return 1−Mx(x).

From the description above, it is easy to see that L(A′) ∈ DTime[T2(n)] because of the
clock. Now the main task is to show that L = L(A′) ̸∈ DTime[T1(n)].

Suppose otherwise, and L ∈ DTime[T1(n)]. Then there is a constant C such that L can
be computed by some TM M (not necessarily A′) with time CT1(n). Let x0 be an encoding
of M such that n = |x0| be sufficiently large that T2(n) ≥ CMCT 2

1 (n), where CM is the
constant in the simulation complexity of UTM. Although this constant CM does depend on
the encoding length of M (the number of states, transitions, etc. in M), it does not depend
on the input x. The important thing here is that padding does not change the behaviour of
M and thus does not increase CM , so our assumption on the existence of n is valid. Hence,
the UTM simulation of Mx0(x0) takes time at most CMCT 2

1 (n) ≤ T2(n). Namely, the “if”
line in the description of A′ doesn’t execute on the input x0.

As before, we now ask what is the value of A′(x0), or equivalently whether x0 ∈ L?

• If x0 ∈ L, then A′ returns 1 in the end, implying Mx0(x0) = 0, which in turn implies
x0 ̸∈ L. Contradiction!

1



• If x0 ̸∈ L, then A′ returns 0 in the end, implying Mx0(x0) = 1, which in turn implies
x0 ∈ L. Contradiction!

This completes the proof.
This argument is called a delayed diagonalisation, because the diagonalisation action may

be taken later than the first assumed encoding.
Remark. It is easy to see that the condition limn→∞

T1(n)2

T2(n)
= 0 is only used for the simulation

step. If we can simulate TMs more efficiently, then this condition can be made stronger.
Indeed, any k-tape TM with time complexity T (n) can be simulated by a 2-tape TM in
time O(T (n) log T (n)) (shown by Hennie and Stearns [HS66], details can be found in [AB09,
Theorem 1.9], or the supplementary note on the course website). This simulation leads to a
better assumption limn→∞

T1(n) log T1(n)
T2(n)

= 0. We will not show it here.
Completely analogously, we can show a space hierarchy theorem. Recall that in the UTM

simulation, we only need to use S(|x|)+CM space, where S(·) is the space complexity of M ,
and CM is a constant only depending on M . Hence, the space hierarchy is slightly tighter
than the time one.

Theorem 2. Let S1(n) and S2(n) be two functions such that S2(n) ≥ log n is space-
constructible. If limn→∞

S1(n)
S2(n)

= 0, then there exists a language L ∈ DSpace[S2(n)] −
DSpace[S1(n)].

Similar to time-constructibility, a function s(n) is space-constructible if there is a TM M
such that on input of length n (like 1n = 111 · · · 1 with n 1’s), M halts while using exactly
s(n) cells on the working tape.

The proof of Theorem 2 is completely analogous to that of Theorem 1, with a couple of
subtle twists. It will be left as an exercise.

Note that without the condition S2(n) ≥ log n, the conclusion of Theorem 2 is actually
not true. However we do not need to assume T2 ≥ n in Theorem 1. This is implicitly
implied by the fact that T2 is time-constructible (otherwise there is not enough time to read
the whole input). However Theorem 1 is still true if T2(n) = O(n). In this case T1 = o(n),
and thus within T1(n) time, the algorithm cannot even read, say, the T2(n)th bit. Therefore
it is easy to design a language that is in DTime[T2] but not DTime[T1] (e.g. simply output the
T2(n)th bit).

2 Robust Complexity Classes
A good complexity class should contain interesting problems, as well as be robust against
small tweaks on the model of computation. The ones we see last time, like DTime[n], are
not necessarily robust classes. For example, if we consider 1-tape machines instead of k-tape
ones, then what DTime[n] contains is actually different.

Also, in practise, it is realized that polynomial-time computation is often feasible whereas
exponential time computation is not. This is formulated as the Cobham-Edmonds thesis,

2



in which Cobham [Cob65] and Edmonds [Edm65] have independently proposed polynomial-
time as the “correct” notion of efficient computation. However, the importance of “polynomial-
time” computation is only realized a few years later.

Let us formally define P.

P :=
∪
c∈N

DTime[nc].

It is easy to see that P is closed with respect to some polynomial-time tweaks. For example,
P stands the same for 1-tape and k-tape TMs. It is known as the extended Church-Turing
thesis, that P is invariant regardless of the model of computation. This thesis is challenged
nowadays by quantum computation, but we still do not know for sure. We will talk about
it later if we have time.

Other robust complexity classes are

L := DSpace[log n];

PSpace :=
∪
c∈N

DSpace[nc];

E :=
∪
c∈N

DTime[ecn];

Exp :=
∪
c∈N

DTime[en
c

].

Note the difference between E and Exp.
It is not hard to establish the following relations among these classes:

L ⊆ P ⊆ PSpace ⊆ Exp.

Clearly P ⊆ Exp, L ⊆ PSpace, and P ⊆ PSpace. In fact, by the Hierarchy Theorems,
L ⊊ PSpace and P ⊊ Exp. But why L ⊆ P and PSpace ⊆ Exp?

We define a (directed) configuration graph GM,x of a TM M with input x that runs in
space S(n) ≥ log n where n = |x|. Recall that a configuration is a “snapshot” of M during
the execution. Each vertex in GM,x is a configuration and (i, j) is an arc if i goes to j. In
particular, every vertex has out degree 1 in GM,x.

How large is the graph GM,x? Note that in n bits, we can count at most 2n distinct
objects. How many bits do we need to use to specify a configuration? We need to specify
the input head position (log n bits), the content of the work tape and the head position
(S(n) + log S(n) bits), and the current state (log |Q| bits). Hence, in total we need only
log n+S(n)+ logS(n)+ log |Q| ≤ cS(n) bits to record a configuration, where c is a constant
depending on M but not x. As a consequence, there are only 2cS(n) possible vertices in GM,x.
We may construct this graph in time O(2cS(n)) and using the standard BFS to figure out
whether the starting state is connected to the accepting state. Thus it implies that

DSpace[S(n)] ⊆
∪
c∈N

DTime[2cS(n)]. (1)

3



In particular, we have that L ⊆ P and PSpace ⊆ Exp.
Also note that if we allow polylog spaces, namely, define

PolyLog :=
∪
c∈N

DSpace[logc n],

we still do not know whether PolyLog ⊆ P? Similarly, we do not know whether PSpace ⊆ E?
Remark (Bibliographic). Relevant chapters are [AB09, Chapter 1] and [Pap94, Chapter 9].

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[Cob65] Alan Cobham. The intrinsic computational difficulty of functions. In Logic, method-
ology and philosophy of science, Proceedings of the 1964 International Congress,
pages 24–30, 1965.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17(3):449–467, 1965.

[HS66] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing machines.
J. ACM, 13(4):533–546, 1966.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

4


	Delayed Diagonalisation
	Robust Complexity Classes

