
INFR11102: Computational Complexity 24/09/2019

Lecture 3: Hierarchy Theorems
Lecturer: Heng Guo

1 Resource-bounded computation
The branch of mathematical logic called recursion theory (also known as computability
theory) studies what problems are computable and what are not, as well as their hardness
relative to each other. On the other hand, computational complexity studies how efficiently
can we solve problems, based on the premise that real-world computation is usually resource-
bounded.

It all started with a paper by Hartmanis and Sterns [HS65], where they coined the term
“computational complexity” as well as initiated this whole subject. They also won the Turing
award because of this work in 1993.

Our model of computation is multi-tape TMs. For definiteness, we fix the alphabet to be
{0, 1,⊔}. The most natural resource bound is time. The time complexity of a deterministic
TM M is

timeM(n) := max
x:|x|=n

{number of transitions taken in M(x)},

where x ∈ {0, 1}∗ and |x| denotes the length of x. For a TM M , let L(M) be the language
(or decision problem) that M computes. Namely

L(M) := {x ∈ {0, 1}∗ | M(x) = 1}.

For a function f(n) ≥ n, define the complexity class

DTime[f] = {L | ∃M and c, s.t. L(M) = L and timeM(n) ≤ cf(n)}.

In other words, DTime[f] is the class of languages that can be computed within time at most
O(f(n)).

The main reason to ignore the constant factor is that it usually depends on the model
of computation. We have seen in the last lecture that we can simulate an arbitrary finite
alphabet Σ using {0, 1,⊔} with O(⌈log |Σ|⌉) slowdown. This reduction actually goes both
ways. If we use a larger alphabet to simulate a smaller one, then we can gain a constant
speedup by simulating multiple steps in one. This technique is known as “linear speedup”,
and details can be found in [Pap94, Chapter 2.4]. Since constants are sensitive to the model
of computation, we define complexity classes up to an arbitrary constant factor. For example,
DTime[f] is the same as DTime[3f] or DTime[C · f] for any constant C > 0.

Also, we will only consider “nice” (time-constructible) functions f due to technical rea-
sons. A function f is called time-constructible if there exists a TM M such that for any x

1

with |x| = n, M(x) runs in exactly f(n) steps. This is just to avoid some pathological situa-
tions. Although there exist functions that are not time-constructible, I claim that all natural
functions you will ever encounter are time-constructible. Typical complexity functions are

n, nc, nc logn, 2
√
n, 2n, 22

...
2n

, etc.
Completely analogously, we can define space complexity by the number of cells a TM

uses, and space-constructible functions. For a function f , DSpace[f] denotes the class of
decision problems that can be solved within space at most O(f(|x|)) for an input x.

The only complicacy for space complexity is that sometimes the “working” space required
is sometimes much smaller than the input size. To get around the issue, for space complexity,
we can assume that the input is in a spacial “input” tape, and then we have several “working”
tapes, and then we have a special “output” tape. We can scan multiple times for the input,
but not write on the input tape, and the output tape is only allowed to be written once.
This allows us to talk about DSpace[log n], for example.

As an example, what is the complexity of the following problem?

Name: Parity
Input: A string x ∈ {0, 1}∗.
Output: The parity of the Hamming weight of x.

It is easy to see that Parity ∈ DTime[n] and Parity ∈ DSpace[1]. Both can be achieved
even simultaneously. In fact, any language recognizable by a finite automata can be com-
puted in linear time and constant space.

2 Hierarchy theorems
A natural question is, whether more time buys us more computational power? This is morally
correct, known as Hierarchy theorems. Roughly speaking, for two functions T1 and T2, if T2

grows (sufficiently) faster than T1, then we can solve more problems in time T2 than in T1.

Theorem 1. Let T1(n) and T2(n) be two functions such that T2 is time-constructible. If
limn→∞

T1(n)2

T2(n)
= 0 (or equivalently, T1(n)

2 = o(T2(n))), then there exists a language L ∈
DTime[T2(n)]− DTime[T1(n)].

Again, the proof is a diagonalisation argument. We will construct the language L by
giving a T2(n)-time algorithm, and then show that it does not belong to DTime[T1(n)].

Before going to the proof, let us recall the Universal Turing Machine (UTM) from the
last lecture. Given an encoding of a TM M , and an input x, the UTM U(M,x) simulates M
on x, yielding the same output. This is to say, that if M accepts x, then U(M,x) accepts,
and if M rejects x, then U(M,x) rejects. If M does not halt on x, U(M,x) also does not
halt. Suppose that M takes at most T (n) time and S(n) space for an input of length n,
then the UTM U uses at most CMT (n)2 time and S(n) +C ′

M space, where CM and C ′
M are

two constants depending only on M . This is because we do roughly CMT (n) operations per

2

each operation of M , and essentially do not use any extra space. See [AB09, Claim 1.6] if
you are curious about the details.

The rough idea to prove Theorem 1 is the following: we list all TMs that run in time
T1(n) (again, up to constant factors). This can be done, since this is a subset of all TMs,
and there are only countably many TMs. Suppose this list is M1,M2, · · · . Also list all
possible inputs as x1, x2, · · · . Our diagonalisation TM A is defined by the following simple
specification:

Name: TM A

Input: xi

Output: 1−Mi(xi)

Note that A can be implemented by simulating Mi on input xi via the Universal Turing
Machine.

We claim that L(A) ̸∈ DTime[T1(n)]. Suppose otherwise. Then L(A) can be computed
by a TM in our list with some index k. (Note that Mk is not necessarily A itself.) What
is the value of A(xk)? By construction, it must be that A(xk) = 1 −Mk(xk) = 1 − A(xk),
which is impossible as A(xk) ∈ {0, 1}.

To finish the proof, we still want to show that L(A) ∈ DTime[T2(n)]. Namely, we need
to show that there exists a constant c, such that A runs within time cT2(n). However, this
is not necessarily the case. The trouble is that although any Mi running in time T1(n)
can be simulated in CMi

T 2
1 (n) time via the UTM, the latter is not necessarily smaller than

than T2(n). There is no guarantee on a uniform upper bound of CMi
over all i. From the

assumption limn→∞
T1(n)2

T2(n)
= 0, we only know that for any C > 0, ∃NC such that ∀n > NC ,

CT 2
1 (n) ≤ T2(n).
To circumvent this issue, we use a delayed diagonalisation argument. The goal is to

diagonalize against every Mi on infinitely many inputs, so that the “sufficiently large” part
in our assumptions kicks in. Recall that every TM can be encoded by infinitely many strings
by padding. If L(A) can be computed in T1 time, then our proof (not the algorithm below)
will find a sufficiently large index k for it.

We construct a TM A′ in Algorithm 1. With a little abuse of notation, we write Mx for
Mi where i is the index of x.

Algorithm 1 A′

Input: x ∈ {0, 1}∗.
Simulate Mx(x), where Mx is the TM encoded by x.
On a separate tape, run the clock of T2(|x|).
if T2(|x|) time is reached, then

return 1.
end if
return 1−Mx(x).

3

From the description above, it is easy to see that L(A′) ∈ DTime[T2(n)] because of the
clock. Now the main task is to show that L = L(A′) ̸∈ DTime[T1(n)]. We will leave that to
the next time.
Remark (Bibliographic). Hierarchy theorems can be found in [AB09, Chapter 3] and [Pap94,
Chapter 7].

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[HS65] Juris Hartmanis and Richard E. Stearns. On the computational complexity of
algorithms. Trans. Amer. Math. Soc., 117:285–306, 1965.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

4

	Resource-bounded computation
	Hierarchy theorems

