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1 Interactive protocol for the permanent
Recall that the permanent of a n-by-n matrix A is defined as:

per(A) :=
∑
π∈Sn

n∏
i=1

Ai,π(i).

Computing the permanent is a #P-complete problem, even if A is a {0, 1} matrix. Moreover,
Toda’s theorem [Tod91] states that PH ⊆ P#P.

Recall the class IP, which is the private coin interactive proof protocol for polynomially
many rounds. It feels like “merely” an interactive extension of NP. However, Lund, Fontnow,
Karloff, and Nisan [LFKN92] showed a surprising result.

Theorem 1. per(A) can be computed by an interactive proof protocol in polynomial rounds.

Here we present an interactive proof system for the permanent over the ring of integers.
The input is an n-by-n {0, 1}-matrix A = (aij)1≤i,j≤n.1 The prover will present an integer
N such that the verifier accepts N with high probability if and only if per(A) = N .

Instead of working over the integer ring, we will choose a finite field GF(p) where p > n! ≥
per(A) is a prime. Thus working in GF(p) does not lose any information, and the advantage
is that every element now has a multiplicative inverse. At the start of the protocol, the
prover will choose this prime p and send it to the verifier, and the verifier then use the
randomized primality test [Mil76, Rab80] (or the deterministic one [AKS04]) to make sure
that p is a prime. The rest computation is all in modulo p.

We utilize the self-reducibility of the permanent. In other words, first observe that

per(A) =
n∑

i=1

a1i per(A1,i),

where A1,i is the (n− 1)-by-(n− 1) submatrix of A obtained by removing the first row and
the ith column of A. Thus, to compute per(A), we only need to compute the permanent for
(n− 1)-by-(n− 1) matrices.

1The protocol still works for arbitrary integers without much modification, but we will stick to the {0, 1}
case for simplicity.
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The protocol resolves around the following polynomial. Define

F (x) :=
n∑

i=1

∏
1≤j≤n, j ̸=i(x− j)∏
1≤j≤n, j ̸=i(i− j)

A1,i.

The coefficients of this polynomial matrices (A1,i). It has an interesting property, namely
that F (i) = A1,i for all 1 ≤ i ≤ n. To see this, if x = i, then only the ith term evaluates to
A1,i, and all others evaluate to 0. Indeed, the construction of F (x) is the matrix analogue
of Lagrange interpolation. Instead of viewing F (x) as a polynomial with matrix coefficients,
we will view it as a (n − 1)-by-(n − 1) matrix, where each entry is a univariate polynomial
of degree ≤ n− 1.

Using this view, define

g(x) := per(F (x)).

and define Br := F (r) for 1 ≤ r ≤ p. Notice that Br = A1,r if 1 ≤ r ≤ n. By definition,
g(r) = per(Br). Moreover, each single entry of F (x) (which is a matrix) is a univariate
polynomial of degree ≤ (n− 1). Thus, g(x) is a polynomial in x of degree ≤ (n− 1)2.

After agreeing with the prime p, The prover’s move is to send ĝ(x) and N to the verifier,
claiming that ĝ(x) = g(x) and N = per(A). Of course the prover might be lying, and thus
we need to verify it. We first do a simple consistency check:

N =
n∑

i=1

a1i · ĝ(i).

If N ̸= per(A), then the prover cannot send the true g(x). Thus, in that case, the prover
must lie and send ĝ ̸= g. We now assume that the consistent check has passed.

The next step is crucial, to build the protocol by induction. The verifier randomly
choose r ∈ [p] and evaluate ĝ(r) and Br. Notice that F (x) can be easily computed, and so
is Br = F (r).

Now we have a (n − 1)-by-(n − 1) matrix Br and a claimed value of ĝ(r) = per(Br) to
verify. We continue by induction.

What is the probability of the verification to succeed? There are two cases.

1. If ĝ = g, then of course ĝ(r) = per(Br), and N = per(A) is verified.

2. If ĝ ̸= g, then since g(x) has degree at most (n− 1)2,

Pr
r∈[p]

[ĝ(r) = g(r)] ≤ (n− 1)2

p
= exp(−O(n)),

since p ≥ n!. If the prover were to lie successfully, then he has to pass all of the
checks above, each of which happens with exponentially small probability. (Otherwise
the recursion goes down to a 1-by-1 matrix whose permanent is easy to compute.)
The induction goes down n steps, and thus the total probability for the prover to lie
successfully is still exponentially small.
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To summarize, if the claimed value N = per(A), then the prover can convince the
verifier with probability 1, by simply answering correctly at every step. If the claimed value
N ̸= per(A), then ĝ must be wrong, and thus the prover must lie for the next smaller matrix,
and in the end he has only exponentially small probability to make up n consistent lies.

2 The power of interactive proofs
Theorem 1 implies that IP is more powerful than the whole PH. Indeed, shortly after Theo-
rem 1 was found, Shamir [Sha92] settled the question regarding the power of IP.

Theorem 2. IP = PSpace.

The proof of Theorem 2 is an IP protocol for TQBF. The protocol is somewhat similar
to the proof of Theorem 1, except that we need to first translate a totally quantified Boolean
formula into a polynomial. This can be done via operations like replacing x∧ y with xy and
x ∨ y with x+ y − xy. Details can be found in [AB09, Section 8.3.3].

One more comment on the difference between IP and AM. Goldwasser and Sipser [GS86]
have shown the following result.

Theorem 3. Let k be a number computable in polynomial-time. IP[k] ⊆ AM[k+2] ⊆ IP[k+2].

Thus, we see that IP[k] = AM[2] = AM for any fixed k (as AM[k] = AM[2]), and IP =
IP[poly] = AM[poly]. The number of rounds has a more essential role in the power of in-
teractive proof systems than the difference between private vs. public coins. The proof of
Theorem 3 is very similar to the AM protocol for GNI. Namely, we find a suitable set S and
distinguish between Yes/No via the size of S.

3 Random self-reducibility of the permanent
An interesting aspect of the permanent is its random self-reducibility, shown by Dick Lipton
[Lip89]. It implies that computing the permanent can be reduced to computing a random
instance, and the idea to prove it is very similar to the LFKN protocol. (In fact, LFKN were
inspired by Lipton’s result.)

Let F be a finite field of size > 4n.

Theorem 4. If there is an algorithm which computes the permanent of 1 − 1
4n

fraction of
all n-by-n matrices over F, then there is one which computes all matrices correctly with high
probability.

Proof. Let A be the input matrix. Pick a random matrix R from Fn×n, and let B(x) =
A+ x · R. Thus, per(B(x)) is a polynomial in x of degree at most n. For any fixed r, B(r)
is a random matrix, and thus the oracle computes per(B(r)) correctly with probability at
least 1− 1/4n.
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Fix n + 1 values r1, · · · , rn+1 ∈ F. We can evaluate per(B(x)) at x = r1, · · · , rn+1 using
the oracle. The probability such that one of them is wrong is 1

4n
. Thus, by a union bound,

we compute all of per(B(ri)) correctly for all i ∈ [n+1] with probability at least 1− n+1
4n

≥ 2
3

(when n is at least some constant). When this happens we can interpolate the polynomial
of per(B(x)) since its degree is at most n. Indeed, it is easy to see that

n+1∑
i=1

∏
1≤j≤n+1, j ̸=i(x− ri)∏
1≤j≤n+1, j ̸=i(ri − rj)

per(B(ri))

agrees with per(B(x)) on n+1 points. Since the degree of per(B(x)) is at most n, they must
be identical. What we want to compute is simply per(A) = per(B(0)).

The above yields an algorithm that succeeds with probability at least 2/3. To drive the
error probability to arbitrarily low, we may run the algorithm multiple times (by taking
more than one R) and take the most common one. (This is, once again, an application of
the Chernoff bound.)

Remark (Historical). Nisan first sent out an email about an multi-prover interactive protocol
(denoted MIP) for the permanent in Nov 1989. Within a couple of weeks, Lund, Fontnow, and
Karloff found the protocol for the permanent (Theorem 1). The published version [LFKN92]
combined both results. After these two emails, Shamir [Sha92] showed Theorem 2 within
another couple of weeks. Eventually, Theorem 2 was “scaled down” from IP to NP, which is
now known as the PCP (Probabilistically Checkable Proof) theorem. It states that any NP

language has a polynomial sized proof that can be checked by only O(1) queries.
Remark (Bibliographic). Relevant chapters are [AB09, Chapter 8.6, 8.7].
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