INFR11102: Computational Complexity 21/11/2019

Lecture 19: Graph Isomorphisms

Lecturer: Heng Guo

1 An Arthur-Merlin protocol for GNI

Last time we gave a simple interactive protocol for GNI with private coins. We will show
that it can also be achieved using only public coins.

Theorem 1. GNI € AM.

We will take a more quantitative approach. For any graph G with n vertices, let aut(G) =
{m | 7(G) = G} be its automorphism group. Let iso(G) = {n(G) | = € S,,} be the set of
graphs isomorphic to G. Consider the set {(G,7) | 7 € S,}. Clearly 7(G) € iso(G), and
each one appears exactly |aut(G)| times. Namely,

n! = |{(G,7) | 7€ S} = |aut(G)] - |iso(G)] .
Now, for GG; and G, define
S :={(G",0)| o €aut(G),G' 2 Gy or G' = Gy}

Thus, if G1 = Go, then |S| = n!, and otherwise |S| = 2n!.

To distinguish these two cases, once again we will use pairwise independent hash family.
Let H be such a family from S to T where T is some arbitrary set of size 4n!. Fix a particular
element o € T'. Our protocol is the following:

1. Arthur picks a random function H € H and present it to Merlin;
2. Merlin returns an element (G’,0) € S and a permutation T;
3. Arthur accepts if (1) 7(G') = G; or Gy; (2) 0(G') = G’; and (3) H(G',0) = a.

Note that the last verification step can be done easily in deterministic polynomial time.
Conditions (1) and (2) verify that (G',0) is indeed a element of S, and (3) asserts a fact
whose probability to happen distinguishes the two scenarios of S.

If |S| = n!, then by the definition of pairwise independent hash function,
5]

A

1
HPerHBSGS7 H(s)=a] < T =T

Otherwise |S| = 2n!, then by inclusion-exclusion,

Pr[3se S, H(s)=a] > Pr [H(s) =a] — Z Pr [H(s) = H(s') = q]

HeH HeH HeH
sesS s,8'€S
_ 181 <IS|> N
7 N2/ P
1 sP 1 1 3
> - — =———-=_.
2 2T 2 8 8

Thus, we have created a constant gap in the accepting probability between the two cases.
We can employ the standard “repeat and vote” trick to amplify such a gap. Details of the
amplification are omitted.

2 Evidence against NP-completeness of graph isomor-
phisms

Recall the graph isomorphism (GI) problem. Since there was no efficient algorithm, it is
natural to wonder whether the problem is NP-complete. However, this is also unlikely to be
the case, unless the polynomial hierarchy collapses.

Theorem 2. If GI is NP-complete, then ¥ = II5.

Proof. Tt is sufficient to show that if GI is NP-complete, then X5 C TI5.
Consider the QBFy problem, which is complete for X5 and whose input are formulas of
the following form:

Y = FaVy p(z,y).

Since by assumption, GI is NP-complete, GNI is coNP-complete. Thus, there is a reduction
R(-) such that fixing =, ¥/'(x) := Vy ¢(z,y) is valid if and only if R(¢'(z)) € GNI.

Last time, we showed that GNI € AM and AM = AM; where AM; is the one-sided error
version. Let P(z) := R(¢'(z)). Thus, by appropriate amplification, there is a poly-time TM
M such that

I
—_

P(z) € GNI = lir[EIz M(P(x),r, z) = 1]
P(z) ¢ GNI = P;r[ﬂz M(P(z),r, z) = 1]

IA

~
i
L

where n = |z| and both r and z all have length bounded by a polynomial in 7.
We claim that

Y is valid < Vrdz3dz M(P(z),r, 2) = 1. (1)

This implies the theorem. To verify (1), we have two cases:

2

1. If ¢ is valid, then 3z such that P(x) € GNI which implies that
J2Vr3dz, M(P(z),r, 2z) = 1.
This implies that Vr3z3z, M(R(¢Y'(z)),r, z) = 1.
2. If 9 is not valid, then Va, P(z) ¢ GNI. Thus,

Vo Pr[3z M(P(z),r,2) =1] <271,
which implies, via the union bound,

Pr[3x3z M(P(x),r,z) =1] < Z Pr[3z M(P(z),r, z) = 1]
r e(o1)n r
<r.2l=1/2<1.

In other words, Pr,[VaVz M(P(x),r,z) = 0] > 0. The probabilistic method implies
that

IrVaVz M(P(x),r,z) =0
& = (Yrdedz M(P(z),r,2) =1). O

If we look more carefully at the proof of Theorem 2, the only crucial property of GNI
we used is that GNT € AM.
Corollary 3. If coNP C AM, then X5 =115,

Recall that NP C AM C TI5. Corollary 3 implies that AM sits in an interesting position at
the complexity landscape.

3 Counting graph isomorphisms

We have seen that some decision problems in P have #P-complete counting counterparts.
One natural question is that whether the counting version of GI is easy or hard.

Name: #GI
Input: Two graphs G and Gs.

Output: How many permutations are there to make GG identical to G5?

Clearly #GI is no easier than GI. Next we show that they actually have the same
complexity.

Theorem 4. #GI <, GI.

To show Theorem 4, we need an intermediate problem. Recall that aut(G) is the auto-
morphism group of a graph G.

Name: #AuT
Input: A graph G.
Output: |aut(G)|

Lemma 5. #Aut <; GI.

Proof. Let G = (V, E) be a graph with |V| = n. Consider a particular vertex v € V. Let
Cy(G) :={m(v) | m € aut(G)} be the set of vertices that v can map to via an automorphism,
and let S,(G) := {m | 7 € aut(G) and 7(v) = v} be the set of automorphisms fixing v. Basic
group theory implies that |aut(G)| = |C,(G)]|S,(G)|. One way to understand this fact is by
choosing a m, for each v € C,(G) such that m, € aut(G) and m,(v) = u. Every 7 € aut(G)
can be uniquely decomposed into m, o 0 where ¢ € S,,. The claim follows.

Next we will compute |C,(G)| and |S,(G)| separately. We go through every vertex u € V
using the GI oracle to determine whether an automorphism exists mapping v to u. To do
so, let H be a “rigid” graph with n + 1 vertices such that aut(H) contains only the identity.'
Construct GG, by taking a copy of GG and a copy of H, and then gluing v € GG to an arbitrary
vertex w € H. Similarly, construct G, by gluing v to w. We ask the GI oracle whether
G, = G,. Since vertices in H must map to vertices in H (H has one more vertex than G),
such an isomorphism exists if and only if v is mapped to u. Namely G, = G, if and only if
u € Cy(Q).

We still need to count |S,(G)|. The idea is to use self-reducibility. Namely we want
to transform it into a smaller instance of #AUT itself. In fact, we claim that |S,(G)| =
laut(G,)|. The reason is the same as above, namely that all vertices in the copy of H can
only map to vertices in H, and H has only one automorphism. Although G, contains 2n
vertices, n + 1 of them can only map to themselves. Hence, the number of “free” vertices in
G, isn — 1. Let v; := v, and to continue, we pick an arbitrary free vertex. Call it vy, and
we proceed to compute |Cy, (G,)|. Namely, we attach a rigid graph H' of size 2n + 1 to vy
to get G, ., and go through all vertices in V' \ {vy,v2} to determine their membership in
Cy, (Gy,) using the GI oracle. Then we recursively compute S, (G,).

This recursion can only go down n steps. In fact, we construct a sequence of graphs G,,,,
Goywys “* 5y Guy..own1, €ach one fixing one more vertex and having polynomial size. It can
be verified that

This finishes the proof. O
Now we are ready to prove Theorem 4.

Proof of Theorem J. We first use the GI oracle to test whether G; = (5. If not, then we
return 0. Otherwise, we compute the number of automorphisms of G; using Lemma 5. We
claim that this is also the number of isomorphisms from G; to Gs.

1Such graphs do exist!

To be more specific, let iso(G, Ge) := {7 | 7(G1) = G2}. Our claim is that |iso(Gy, G2)| =
laut(G1)| if G1 = Go. Fix an arbitrary permutation 7y € iso(G, Gy). For any o € iso(Gy),
it is easy to see that my o 0(G;1) = 7(G1) = Go. Thus, mg o 0 € iso(Gy, Gz). It implies that
7o o aut(Gy) C iso(Gy, Ga).

On the other hand, for each 7’ € iso(G1, G5), we have that 7, ' o7'(G1) = 75 H(G2) = G
Thus, 7, ' o ' € aut(Gy), namely 7' = w5 o o for some ¢ € aut(G;). It implies that
iso(G, G2) C mp o aut(Gh).

To summarize, we have that
iso(G1, Ga) = mp o aut(Gy).
Taking the cardinality on the both sides yields the claim. Il

Remark (Bibliographic). Theorem 2 was first shown by Boppana, Hastad, and Zachos [BHZ87].
Relevant chapters are [AB09, Chapter 8.2].

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 20009.

[BHZ87] Ravi B. Boppana, Johan Hastad, and Stathis Zachos. Does co-NP have short
interactive proofs? Inf. Process. Lett., 25(2):127-132, 1987.

	An Arthur-Merlin protocol for GNI
	Evidence against NP-completeness of graph isomorphisms
	Counting graph isomorphisms

