
INFR11102: Computational Complexity 21/11/2019

Lecture 19: Graph Isomorphisms
Lecturer: Heng Guo

1 An Arthur-Merlin protocol for GNI
Last time we gave a simple interactive protocol for GNI with private coins. We will show
that it can also be achieved using only public coins.

Theorem 1. GNI ∈ AM.

We will take a more quantitative approach. For any graph G with n vertices, let aut(G) =
{π | π(G) = G} be its automorphism group. Let iso(G) = {π(G) | π ∈ Sn} be the set of
graphs isomorphic to G. Consider the set {(G, π) | π ∈ Sn}. Clearly π(G) ∈ iso(G), and
each one appears exactly |aut(G)| times. Namely,

n! = |{(G, π) | π ∈ Sn}| = |aut(G)| · |iso(G)| .

Now, for G1 and G2, define

S := {(G′, σ) | σ ∈ aut(G′), G′ ∼= G1 or G′ ∼= G2}.

Thus, if G1
∼= G2, then |S| = n!, and otherwise |S| = 2n!.

To distinguish these two cases, once again we will use pairwise independent hash family.
Let H be such a family from S to T where T is some arbitrary set of size 4n!. Fix a particular
element α ∈ T . Our protocol is the following:

1. Arthur picks a random function H ∈ H and present it to Merlin;

2. Merlin returns an element (G′, σ) ∈ S and a permutation τ ;

3. Arthur accepts if (1) τ(G′) = G1 or G2; (2) σ(G′) = G′; and (3) H(G′, σ) = α.

Note that the last verification step can be done easily in deterministic polynomial time.
Conditions (1) and (2) verify that (G′, σ) is indeed a element of S, and (3) asserts a fact
whose probability to happen distinguishes the two scenarios of S.

If |S| = n!, then by the definition of pairwise independent hash function,

Pr
H∈H

[∃s ∈ S, H(s) = α] ≤ |S|
|T |

=
1

4
.

1

Otherwise |S| = 2n!, then by inclusion-exclusion,

Pr
H∈H

[∃s ∈ S, H(s) = α] ≥
∑
s∈S

Pr
H∈H

[H(s) = α]−
∑
s,s′∈S

Pr
H∈H

[H(s) = H(s′) = α]

=
|S|
|T |

−
(
|S|
2

)
· 1

|T |2

≥ 1

2
− |S|2

2 |T |2
=

1

2
− 1

8
=

3

8
.

Thus, we have created a constant gap in the accepting probability between the two cases.
We can employ the standard “repeat and vote” trick to amplify such a gap. Details of the
amplification are omitted.

2 Evidence against NP-completeness of graph isomor-
phisms

Recall the graph isomorphism (GI) problem. Since there was no efficient algorithm, it is
natural to wonder whether the problem is NP-complete. However, this is also unlikely to be
the case, unless the polynomial hierarchy collapses.

Theorem 2. If GI is NP-complete, then Σp
2 = Πp

2.

Proof. It is sufficient to show that if GI is NP-complete, then Σp
2 ⊆ Πp

2.
Consider the QBF2 problem, which is complete for Σp

2 and whose input are formulas of
the following form:

ψ = ∃x∀y φ(x, y).

Since by assumption, GI is NP-complete, GNI is coNP-complete. Thus, there is a reduction
R(·) such that fixing x, ψ′(x) := ∀y φ(x, y) is valid if and only if R(ψ′(x)) ∈ GNI.

Last time, we showed that GNI ∈ AM and AM = AM1 where AM1 is the one-sided error
version. Let P (x) := R(ψ′(x)). Thus, by appropriate amplification, there is a poly-time TM
M such that

P (x) ∈ GNI ⇒ Pr
r
[∃z M(P (x), r, z) = 1] = 1;

P (x) ̸∈ GNI ⇒ Pr
r
[∃z M(P (x), r, z) = 1] ≤ 2−n−1,

where n = |x| and both r and z all have length bounded by a polynomial in n.
We claim that

ψ is valid ⇔ ∀r∃x∃z M(P (x), r, z) = 1. (1)

This implies the theorem. To verify (1), we have two cases:

2

1. If ψ is valid, then ∃x such that P (x) ∈ GNI which implies that

∃x∀r∃z,M(P (x), r, z) = 1.

This implies that ∀r∃x∃z, M(R(ψ′(x)), r, z) = 1.

2. If ψ is not valid, then ∀x, P (x) ̸∈ GNI. Thus,

∀xPr
r
[∃z M(P (x), r, z) = 1] ≤ 2−n−1,

which implies, via the union bound,

Pr
r
[∃x∃z M(P (x), r, z) = 1] ≤

∑
x∈{0,1}n

Pr
r
[∃z M(P (x), r, z) = 1]

≤ 2n · 2−n−1 = 1/2 < 1.

In other words, Prr[∀x∀z M(P (x), r, z) = 0] > 0. The probabilistic method implies
that

∃r∀x∀z M(P (x), r, z) = 0

⇔ ¬ (∀r∃x∃z M(P (x), r, z) = 1) .

If we look more carefully at the proof of Theorem 2, the only crucial property of GNI
we used is that GNI ∈ AM.

Corollary 3. If coNP ⊆ AM, then Σp
2 = Πp

2.

Recall that NP ⊆ AM ⊆ Πp
2. Corollary 3 implies that AM sits in an interesting position at

the complexity landscape.

3 Counting graph isomorphisms
We have seen that some decision problems in P have #P-complete counting counterparts.
One natural question is that whether the counting version of GI is easy or hard.

Name: #GI
Input: Two graphs G1 and G2.
Output: How many permutations are there to make G1 identical to G2?

Clearly #GI is no easier than GI. Next we show that they actually have the same
complexity.

Theorem 4. #GI ≤t GI.

To show Theorem 4, we need an intermediate problem. Recall that aut(G) is the auto-
morphism group of a graph G.

3

Name: #Aut
Input: A graph G.
Output: |aut(G)|

Lemma 5. #Aut ≤t GI.

Proof. Let G = (V,E) be a graph with |V | = n. Consider a particular vertex v ∈ V . Let
Cv(G) := {π(v) | π ∈ aut(G)} be the set of vertices that v can map to via an automorphism,
and let Sv(G) := {π | π ∈ aut(G) and π(v) = v} be the set of automorphisms fixing v. Basic
group theory implies that |aut(G)| = |Cv(G)| |Sv(G)|. One way to understand this fact is by
choosing a πu for each u ∈ Cv(G) such that πu ∈ aut(G) and πu(v) = u. Every π ∈ aut(G)
can be uniquely decomposed into πu ◦ σ where σ ∈ Sv. The claim follows.

Next we will compute |Cv(G)| and |Sv(G)| separately. We go through every vertex u ∈ V
using the GI oracle to determine whether an automorphism exists mapping v to u. To do
so, let H be a “rigid” graph with n+1 vertices such that aut(H) contains only the identity.1
Construct Gv by taking a copy of G and a copy of H, and then gluing v ∈ G to an arbitrary
vertex w ∈ H. Similarly, construct Gu by gluing u to w. We ask the GI oracle whether
Gv

∼= Gu. Since vertices in H must map to vertices in H (H has one more vertex than G),
such an isomorphism exists if and only if v is mapped to u. Namely Gv

∼= Gu if and only if
u ∈ Cv(G).

We still need to count |Sv(G)|. The idea is to use self-reducibility. Namely we want
to transform it into a smaller instance of #Aut itself. In fact, we claim that |Sv(G)| =
|aut(Gv)|. The reason is the same as above, namely that all vertices in the copy of H can
only map to vertices in H, and H has only one automorphism. Although Gv contains 2n
vertices, n+ 1 of them can only map to themselves. Hence, the number of “free” vertices in
Gv is n − 1. Let v1 := v, and to continue, we pick an arbitrary free vertex. Call it v2, and
we proceed to compute |Cv2(Gv1)|. Namely, we attach a rigid graph H ′ of size 2n + 1 to v2
to get Gv1,v2 and go through all vertices in V \ {v1, v2} to determine their membership in
Cv2(Gv1) using the GI oracle. Then we recursively compute Sv2(Gv1).

This recursion can only go down n steps. In fact, we construct a sequence of graphs Gv1 ,
Gv1,v2 , · · · , Gv1,...,vn−1 , each one fixing one more vertex and having polynomial size. It can
be verified that

|aut(G)| = |Cv1(G)| · |Cv2(Gv1)| · · · · ·
∣∣Cvn(Gv1,...,vn−1)

∣∣ .
This finishes the proof.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. We first use the GI oracle to test whether G1
∼= G2. If not, then we

return 0. Otherwise, we compute the number of automorphisms of G1 using Lemma 5. We
claim that this is also the number of isomorphisms from G1 to G2.

1Such graphs do exist!

4

To be more specific, let iso(G1, G2) := {π | π(G1) = G2}. Our claim is that |iso(G1, G2)| =
|aut(G1)| if G1

∼= G2. Fix an arbitrary permutation π0 ∈ iso(G1, G2). For any σ ∈ iso(G1),
it is easy to see that π0 ◦ σ(G1) = π(G1) = G2. Thus, π0 ◦ σ ∈ iso(G1, G2). It implies that
π0 ◦ aut(G1) ⊆ iso(G1, G2).

On the other hand, for each π′ ∈ iso(G1, G2), we have that π−1
0 ◦π′(G1) = π−1

0 (G2) = G1.
Thus, π−1

0 ◦ π′ ∈ aut(G1), namely π′ = π0 ◦ σ for some σ ∈ aut(G1). It implies that
iso(G1, G2) ⊆ π0 ◦ aut(G1).

To summarize, we have that

iso(G1, G2) = π0 ◦ aut(G1).

Taking the cardinality on the both sides yields the claim.

Remark (Bibliographic). Theorem 2 was first shown by Boppana, Håstad, and Zachos [BHZ87].
Relevant chapters are [AB09, Chapter 8.2].

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[BHZ87] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short
interactive proofs? Inf. Process. Lett., 25(2):127–132, 1987.

5

	An Arthur-Merlin protocol for GNI
	Evidence against NP-completeness of graph isomorphisms
	Counting graph isomorphisms

