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Lecture 18: Unique Satisfiability; Interactive Proofs
Lecturer: Heng Guo

1 Unique Satisfiability
The number of solutions to NP-hard problems may vary in a large range. It might be 0, 1,
polynomially many, or exponentially many. One might speculate that NP-hard problems are
difficult because of this varying behaviour. However, as we will see, even if we restrict the
number of solutions to at most 1, the problem is still as difficult as the Sat.

Consider the following question. Suppose we know that a given formula has at most 1
satisfying assignment, is Sat getting any easier?

Name: UniSat
Input: A formula φ with at most 1 satisfying assignment.
Output: Is φ satisfiable?

A decision problem of this kind is usually called a promise problem, namely its input satis-
fies a certain promise. An algorithm A(·) for UniSat shall satisfy the following requirement:
for an input φ,

A(φ) =


0 if φ is not satisfiable;
1 if φ has a unique satisfying assignment;
0/1 otherwise.

Notice that A is allowed to output whatever when φ has more than 1 satisfying assignments.
What Valiant and Vazirani [VV86] showed is that UniSat is not easier than Sat, at least
for randomized algorithms.

Theorem 1 (Valiant-Vazirani [VV86]). If there is a (randomized) polynomial-time algorithm
A for UniSat, then NP = RP.

The main technical tool is still pairwise independent hash families. Recall its definition.

Lemma 2. Let S ⊆ {0, 1}n be a set with 2m ≤ |S| ≤ 2m+1 for some integer m ≥ 0, and let
Hn,m+2 be a pairwise independent hash family from {0, 1}n to {0, 1}m+2. Then

Pr
H∈Hn,m+2

[
there is a unique x ∈ S with H(x) = 0m+2

]
> 1/8.
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Proof. Let 0 = 0m+2 and p := 2−m−2 so that |S| · p ∈
[
1
4
, 1
2

]
. By the definition of pairwise

independent hash families, for any x ∈ S,

Pr
H∈Hn,m+2

[H(x) = 0] = p,

and for any x ̸= x′ ∈ S,

Pr
H∈Hn,m+2

[H(x) = H(x′) = 0] = p2.

Let N be a random variable denoting |{x | H(x) = 0}| where H is chosen uniformly at
random from Hn,m+2. By inclusion/exclusion,

Pr[N ≥ 1] ≥
∑
x∈S

Pr[H(x) = 0]−
∑

x≠x′∈S

Pr [H(x) = H(x′) = 0]

= |S| · p−
(
|S|
2

)
p2,

and

Pr[N ≥ 2] ≤
∑

x ̸=x′∈S

Pr [H(x) = H(x′) = 0] =

(
|S|
2

)
p2.

Hence,

Pr[N = 1] = Pr[N ≥ 1]− Pr[N ≥ 2]

≥ |S| · p− 2

(
|S|
2

)
p2 ≥ |S| · p− |S|2 · p2 > 1/8,

using the fact that |S| · p ∈
[
1
4
, 1
2

]
.

Lemma 2 is similar to the isolation lemma we showed last time. The key point is still
that when the size of S is appropriate, isolation happens with high probability.

Proof of Theorem 1. The basic idea is to transform the input φ into a more restrained for-
mula φ′ so that if φ is satisfiable, then φ′ has a unique satisfying assignment with high
probability. To use Lemma 2, we need to know an integer m such that 2m ≤ |S| ≤ 2m+1,
where S is the set of satisfying assignments of φ. We get around this by choosing m ∈ [n−1]
uniformly at random. Draw a random hash function H ∈ Hn,m+2 and let

ψ(x) := φ(x) ∧ (H(x) = 0) .

Let φ′ be the Boolean formula that is equivalent to ψ (with possibly auxiliary variables).
We then simply output A(φ′).

To see the correctness of our algorithm, if φ is not satisfiable, then neither is φ′. Oth-
erwise, with probability at least 1/n, S satisfies that 2m ≤ |S| ≤ 2m+1. By Lemma 2, with
probability at least 1/8, φ′ has a unique satisfying assignment. Thus with probability at
least 1

8n
multiplied by the correct probability of A, our algorithm is correct. We may use the

standard amplification method to make the correct probability arbitrarily close to 1.
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2 Private coin interactive proof systems
In the verification definition of NP, a certificate is used to verify or prove the validity of an
input. This is a static proof. A game-theoretical way to look at this is that an almighty
prover presents a proof, and a polynomial-time verifier can verify the correctness of the proof.
Instead, we may also allow the verifier and the prover to interact with each other. It leads
to the notion of interactive proof systems.

Allowing interaction does not sound like a big generalization, and indeed, if both the
prover and the verifier are deterministic, then one can show that this is the same class as
NP. However, what about adding some randomness?

The prover is assumed to have unlimited computational power, and thus there is no
need to employ randomness on his side. The interactive proof class, IP, is defined with a
probabilistic verifier. In NP, the verifier has to run within polynomial-time, and the proof can
be arbitrarily difficult to compute, as long as it is correct and exists. Similarly, the verifier
in IP is also bounded by polynomial-time, and the prover can be arbitrarily powerful. In
fact, it is easy to see that the prover does not need power beyond PSpace, with which he
can already enumerate all possible responses.

To be more precise about the “interaction”, suppose on input x, V is the verifier and
P is the prover. In the first round, V produces (probabilistically) some queries y1 for P ,
depending on x, and P returns z1 depending on (x, y1). In the next round, V generates
(probabilistically) another query y2 depending on (x, y1, z1), and P returns z2 depending
on P2(x, y1, y2). The protocol continues in this fashion until V has reached a decision. We
denote by ⟨V, P ⟩k(x) such an outcome. The running time of V in this protocol has to be
bounded by a polynomial in |x|, and all strings y1, y2, · · · , z1, z2, · · · must have polynomial
length as well.

Definition 1. For any integer k ≥ 1, a language L is in IP[k] if there is a probabilistic
polynomial-time TM V (verifier) such that V can have a k-round interaction with a function
P : {0, 1}∗ → {0, 1}∗ such that

• if x ∈ L, then ∃P , Pr[⟨V, P ⟩k(x) = 1] ≥ 3
4
;

• if x ̸∈ L, then ∀P , Pr[⟨V, P ⟩k(x) = 1] ≤ 1
4
.

Then IP =
∪

c∈N IP[n
c].

Once again, this class does not seem like too much of a generalization. An easy upper
bound is that IP ⊆ PSpace. However, surprisingly, IP is a lot more powerful than NP.

Theorem 3 (Shamir [Sha92]). IP = PSpace.

By using the same amplification techniques as for BPP (repeat and take a majority vote),
the constants 3/4 and 1/4 can be replaced by 1 − 2−nc and 2−nc′ for any c, c′ > 0. One
can even do this without requiring more rounds, via a technique termed parallel repetition
[Raz98]. The essential requirement here is that the gap between the two cases cannot be too
small.
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2.1 An interactive proof system for graph non-isomorphism
We have mentioned Graph isomorphism (GI), which is a problem with potentially interme-
diate complexity between P and NP.

Name: GI
Input: Two graphs G1 and G2.
Output: Are G1 and G2 isomorphic?

Recall that GI ∈ NP. The certificate is simply a permutation of all vertices so that G1 and
G2 are identical. On the other hand, for its complement problem, graph non-isomorphism
(GNI), there does not seem to exist an easy certificate. However, there is a very simple
interactive proof system for GNI.

The verifier first toss a random coin, and choose G1 or G2 respectively. Then, he permutes
the resulting graph randomly, and then sends it to the prover. Call this random graph X.
The prover is required to distinguish whether this graph is G1 or G2. The verifier accepts if
the prover guessed it correctly.

Apparently, if G1 and G2 are not isomorphic, then the prover can easily distinguish them
by brute force. (Recall that the prover has unlimited computational power.) On the other
hand, if G1

∼= G2, then X is uniform over all graphs isomorphic to G1 or G2, independently
from the choice at the beginning. Thus, the answer from the prover, which only depends on
X, is also independent over the choice of G1 or G2. Hence, he can guess it correctly with
probability at most 1/2. Since the error in the protocol above is one-sided, we can repeat it
many times to get a very small error probability.

Proposition 4. GNI ∈ IP[2].

Remark (Bibliographic). Private coin system IP was introduced by Goldwasser, Micali, and
Rackoff [GMR89]. Relevant chapters are [AB09, Chapter 8.1].

3 Public coin systems
In Definition 1, the prover is not allowed to see the random choice of V . Thus it is called a
private coin system. This makes the prover’s job more difficult — he needs to be prepared
by whatever query the verifier comes up with. Indeed, our protocol for GNI seems to rely on
this fact.1 If, on the other hand, such a coin is public, then we have some different complexity
classes, which intuitively is less powerful than IP.

Definition 2. The class AM[k] is defined in the same way as IP[k] in Definition 1, except
that the verifier’s message is restricted to only the random bits, and no other random bit is
allowed to be used by the verifier.

Define AM = AM[2].
1However this is just an illusion! We will give a public coin system for GNI in the next lecture.

4



The name AM stands for “Arthur-Merlin”. The prover is termed “Merlin” to reflect its in-
finite power, whereas the verifier, Arthur, is a mere mortal and can only perform polynomial-
time computation. In addition, Arthur cannot hide coins he has tossed from Merlin.

Note the disparity between AM = AM[2] and IP = IP[poly]. This is somewhat inconsistent
but standard in the literature. In fact, it can be shown that AM[k] = AM[2] for any constant
k ≥ 2.

An alternative definition for AM is the following.

Definition 3. A language L ∈ AM if there exists a polynomial-time TM M such that

x ∈ L⇒ Pr
y
[∃z,M(x, y, z) = 1] ≥ 3

4
;

x ̸∈ L⇒ Pr
y
[∃z,M(x, y, z) = 1] ≤ 1

4
,

where y and z are both polynomially bounded in length.

One way to understand AM is that in a two-player game, Arthur makes a random move
first, and Merlin counters with the best possible move.

Standard amplification techniques, once again, apply here. The gap can be made arbi-
trarily close to 1. In fact, one can show that the correct probability can be changed to 1
without changing Definition 3.

Definition 4. A language L ∈ AM1 if there exists a polynomial-time TM M such that

x ∈ L⇒ Pr
y
[∃z,M(x, y, z) = 1] = 1;

x ̸∈ L⇒ Pr
y
[∃z,M(x, y, z) = 1] ≤ 1

4
,

where y and z are both polynomially bounded in length.

Theorem 5. AM = AM1.

Proof sketch. It is clear that AM1 ⊆ AM. We will show the other direction. Let L ∈ AM. We
assume the error probability in Definition 3 is 2−nc via standard amplification. The idea here
is similar to the BPP ⊆ Σp

2 proof. Let S be the set of random choices of y for an input x.
Then x ∈ L if and only if the set of certificates for x is “large”. The one-sided error protocol
is:

1. Arthur draws randomly a few “shifts” s1, · · · , sm for some m;

2. Merlin returns y and z1, · · · , zm;

3. Arthur verifies that M(x, y ⊕ si, zi) = 1 for all i.

We have analyzed the error probability in the BPP ⊆ Σp
2 proof and will not repeat here.
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Using Theorem 5, we have the following containments.

Theorem 6. NP ⊆ AM ⊆ Πp
2 and BPP ⊆ AM.

Proof. NP ⊆ AM and BPP ⊆ AM are straightforward from Definition 3.
To see AM ⊆ Πp

2, we only need to show AM1 ⊆ Πp
2 by Theorem 5. Rewriting Definition 4,

for L ∈ AM1,

x ∈ L⇒ ∀y∃z,M(x, y, z) = 1;

x ̸∈ L⇒ Pr
y
[∃z,M(x, y, z) = 1] ≤ 1

4
⇒ ∃y∀zM(x, y, z) = 0.

This is indeed a Πp
2 expression.

Remark (Bibliographic). Public coin system AM was introduced Babai [Bab85]. Relevant
chapters are [AB09, Chapter 8.2].
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