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Lecture 17: Approximate Counting

Lecturer: Heng Guo

1 Toda’s theorem

One remarkable result, due to Seinosuke Toda [Tod91], shows that #P is more powerful than
the whole of polynomial hierarchy.

Theorem 1. PH C P#5AT,

Toda’s theorem is rather complicated and we will omit its proof. Details can be found
in [AB09, Chapter 17.4].

On the other hand, given a SAT oracle, we can approximately count #SAT. Thus,
approximately counting is at most NP-hard.

2 Isolation lemma

Our main tool for approximate counting is the isolation lemma, introduced by Valiant and
Vazirani [VV86]. It also has a number of interesting applications related to BPP and the
hardness of SAT when the formula has at most 1 satisfying assignment (called UNISAT). It
relies on a notion called pairwise independent hash functions.

2.1 Pairwise independent hash functions

Fix some (discrete) domain D and range R. Let H = {H;};c[) be a family of functions, where
for each i € [k], H; is a function D — R. The family H is said to be pairwise independent if
for any two distinct x, 2" € D and (not necessarily distinct) y,y" € R,

1
Pr [H;(z) =y & Hy(2') =] = —. 1
Prl) = & ) =) = 0
Here the function H; is chosen uniformly from the set H. In other words, suppose D =
{z1,---,x¢}. Consider the random variables Y; = H;(x;) for j € [{], where the randomness

comes from choosing ¢ € [k] uniformly at random. Then, Y; is uniform over R, by summing
over ¢ in (1). Moreover, any two Y; and Yj are independent (hence the name “pairwise
independent”). It is not necessary that all {Y;} are mutually independent.

The requirement may look rather demanding, but next we show that there is a simple
construction if D and R are both finite fields. Suppose D = R = F. Let H = {Hup}aber
and

H,p(x) = ax +b.



So the random function is chosen by picking two random element a and b in F. For any
distinct x, 2" € F and y,3’ € F as in the requirement above, the event in (1) happens if and
only if

a=(y—y)(z—a)"

b=y—(y—y)z—a)"

Since = # x’ are fixed, as well as y and ¢/, the right hand side are two fixed elements in F.
So, the event happens with probability ‘%' . ﬁ = # as required.

In the applications, the most common setup is to take F = GF(2"),! which is the unique
finite field of size 2". We view its elements as {0,1} vectors of length n, and we may take
D = R = GF(2") in the construction above. Moreover, we can truncate the output up to
size £ to get a pairwise independent hash function H from {0,1}" to {0, 1}* for any ¢ < n.

This explains the name “hash function”. We denote such a family as H,, .

2.2 Isolation

Let f be a hash function D — R. If f(x) = f(y) for distinct z,y € D, then this is a
“collision”. On the other hand, we say f isolates x (within a subset S C D) if there is no
y € S such that f(y) = f(x). Moreover, we say that a set F' of functions isolates x if 3f € F
isolates x, and F isolates a set S C D if for any x € S, F isolates x.

The isolation lemma says that, given a pairwise independent hash family and S C D, if
S is “small” (in some precise ways), then with positive probability a random hash function
isolates S. Otherwise S is too big and isolate won’t happen.

Lemma 2. Let S C {0,1}", H,x be a pairwise independent hash family from {0,1}" to
{0,1}*, and m > k. Choose Hy,-- , H,, independently and uniformly at random from H,.j..
We have the following:

1. if |S| < 21 then

Pr[{Hi,...,Hy} isolates S] > 1 — ST

2. if |S| > m2F, then

Pr[{Hi,...,Hy} isolates S] = 0.

Proof. Ttem (2) follows easily from a counting argument. For each H;, it can isolate at most
2% — 1 elements. (We map 2* — 1 elements to distinct locations, and all others to the last
spot in {0, 1}*.) Hence, {Hy, ..., H,} isolates at most m(2¥ — 1) < m2* = |S| elements.

LGF stands for “Galois field”, which is just a synonym of “finite field”. It is known that a finite field exists
if and only if its size is p™ for some prime p and natural number n > 1. Moreover, such a field is unique.
The simplest example is GF(2) = Fo which contains only {0, 1}.



For Item (1), by the definition of pairwise independent hash families,

Pr [Hx)=H(y)= Y. Pr [H@)=H(y)=+=2"

HEHn,k HeHn,k
2€{0,1}F
Hence, by a union bound,
Pr [ H does not isolate = | < Z Pr [H(z)= H(y)] < 5] <1/2.
HEMy - HEM,, -2k
yeS\{z}
Since Hy,--- , H,, are chosen independently,
Pr [ none of {H,} isolates x | < 27™.
Hiy,..., HmGHn,k
Once again, by a union bound,
Pr {Hi,...,Hy,} does not isolate S|
Hiy,..., HmE’Hn,k
< :
< Z - flz,feﬂn ) {Hi,...,H,} does not isolate x|
TES ’
< ‘S| 2 M < 27(m71€+1).
Taking the complement, we get Item (1). N

3 Approximate counting

An interesting application of the isolation lemma is that given a SAT oracle, we can approx-
imately count #SAT. This is firstly shown by Sipser [Sip83| and is simplified by Valiant and
Vazirani [VV86] using the isolation lemma. Note that we may replace the SAT oracle by an
arbitrary NP-complete oracle and #SAT by any problem in #P, but we will stick to SAT and
#SAT for clarity.

Let S be the set of satisfying assignments to a formula ¢ with n variables, and Z := |S]|.
Then 0 < Z < 2". We may assume that Z # 0, since this can be verified by a simple oracle
call. The basic idea is to find an integer 0 < k£ < n such that Z ~ 2k There must exist an
integer kg such that 2Fs=1 < Z < 2%s_ Finding this kg yields a good approximation to Z
(which can be amplified later).

We will test all k& € [n + 1], and set m = 2n in Lemma 2. Namely, we randomly pick
2n hash functions Hy,- -+, Hy, : {0,1}" — {0,1}*. By Lemma 2, if k > kg + 1, isolation
happens with probability at least 1 —27". We use the SAT oracle to verify whether isolation
happens. In other words, for each k, we ask whether “Va € S, one of H; isolates x?” This
can be expressed as a logical formula as follows. Firstly,

H; isolates = < Yy s.t. o(y) =1, and H;(x) # H;(y).



Then we can express the query as
Vo 3i Yy if p(z) = p(y) =1 and z # y, then H;(x) # H;(y).

Although this looks like an V3V-expression, there are only 2n choices of i, and can thus be
rewritten with only one layer of V quantifiers and a polynomial blow-up in its size. We take
its complement to get a proper SAT query.

By going through all of £, we found the smallest one such that isolation happens. Denote
it by ko. The probability that isolation does not happen for all £ < n + 1 is exponentially
small by Item (1) of Lemma 2. In particular, isolation happens for k& = kg+1 with probability
at least 1 — 27", Thus ky < kg + 1 with probability at least 1 —27". R

On the other hand, by Item (2) of Lemma 2, we have that Z < 2n2*. Let Z := 2n2*.
We have that with probability at least 1 — 277,

Z

2 > 7> oks—1 > gko—2 _
8n

Hence, this gives us a randomized algorithm approximate Z within a ratio of O(n).
We can do even better by an amplification trick. Given ¢, we construct a formula

®) —

%, AN WAV AN IR

where each @; for ¢ € [t] is an independent copy of ¢, and the integer ¢ will be set later.
Notice that in order to obtain independent copies, each variable in ¢ is duplicated ¢ times
in ©® namely, each x; is replaced by xl(l), ..., 2% Denote by Z® the number of solutions

g
to o®. It is easy to see that

A A
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We use the randomized algorithm above to approximate Z®, getting an estimate Z(). Since
©® contains tn variables,

t
<2 <1

1
8nt ()

N

—_

~ 1/t
Let Z = (Z(t)) be our final estimate. Then,

1
(8nt)"/!

<=<1

Nl N

The function (8nt)l/ " goes to 1 very quickly as ¢ goes to infinity. Suppose we want to estimate
Z within (1 & €) precision, then all we need is

1 1
> > 1 -
Snt)t T 1re s ©



or equivalently,

(1+¢)" > 8nt.

n

This can be achieved by letting t = O (g) as the left is polynomial in n, and the right is
exponential in n. In summary, we have the following theorem.

Theorem 3. There is a randomized algorithm with a SAT-oracle, that approximates #SAT

within 1 + ¢ and runs in time polynomial in n and e *.

Such an algorithm is usually called a fully polynomial-time randomized approzimation

scheme (FPRAS).
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