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1 Toda’s theorem
One remarkable result, due to Seinosuke Toda [Tod91], shows that #P is more powerful than
the whole of polynomial hierarchy.
Theorem 1. PH ⊆ P#Sat.

Toda’s theorem is rather complicated and we will omit its proof. Details can be found
in [AB09, Chapter 17.4].

On the other hand, given a Sat oracle, we can approximately count #Sat. Thus,
approximately counting is at most NP-hard.

2 Isolation lemma
Our main tool for approximate counting is the isolation lemma, introduced by Valiant and
Vazirani [VV86]. It also has a number of interesting applications related to BPP and the
hardness of Sat when the formula has at most 1 satisfying assignment (called UniSat). It
relies on a notion called pairwise independent hash functions.

2.1 Pairwise independent hash functions
Fix some (discrete) domain D and range R. Let H = {Hi}i∈[k] be a family of functions, where
for each i ∈ [k], Hi is a function D → R. The family H is said to be pairwise independent if
for any two distinct x, x′ ∈ D and (not necessarily distinct) y, y′ ∈ R,

Pr
i∈[k]

[Hi(x) = y & Hi(x
′) = y′] =

1

|R|2
. (1)

Here the function Hi is chosen uniformly from the set H. In other words, suppose D =
{x1, · · · , xℓ}. Consider the random variables Yj = Hi(xj) for j ∈ [ℓ], where the randomness
comes from choosing i ∈ [k] uniformly at random. Then, Yj is uniform over R, by summing
over y′ in (1). Moreover, any two Yj and Yj′ are independent (hence the name “pairwise
independent”). It is not necessary that all {Yj} are mutually independent.

The requirement may look rather demanding, but next we show that there is a simple
construction if D and R are both finite fields. Suppose D = R = F. Let H = {Ha,b}a,b∈F
and

Ha,b(x) = ax+ b.
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So the random function is chosen by picking two random element a and b in F. For any
distinct x, x′ ∈ F and y, y′ ∈ F as in the requirement above, the event in (1) happens if and
only if

a = (y − y′)(x− x′)−1,

b = y − (y − y′)(x− x′)−1 · x.

Since x ̸= x′ are fixed, as well as y and y′, the right hand side are two fixed elements in F.
So, the event happens with probability 1

|F| ·
1
|F| =

1
|F|2 as required.

In the applications, the most common setup is to take F = GF(2n),1 which is the unique
finite field of size 2n. We view its elements as {0, 1} vectors of length n, and we may take
D = R = GF(2n) in the construction above. Moreover, we can truncate the output up to
size ℓ to get a pairwise independent hash function H from {0, 1}n to {0, 1}ℓ for any ℓ ≤ n.
This explains the name “hash function”. We denote such a family as Hn,ℓ.

2.2 Isolation
Let f be a hash function D → R. If f(x) = f(y) for distinct x, y ∈ D, then this is a
“collision”. On the other hand, we say f isolates x (within a subset S ⊂ D) if there is no
y ∈ S such that f(y) = f(x). Moreover, we say that a set F of functions isolates x if ∃f ∈ F
isolates x, and F isolates a set S ⊆ D if for any x ∈ S, F isolates x.

The isolation lemma says that, given a pairwise independent hash family and S ⊆ D, if
S is “small” (in some precise ways), then with positive probability a random hash function
isolates S. Otherwise S is too big and isolate won’t happen.

Lemma 2. Let S ⊆ {0, 1}n, Hn,k be a pairwise independent hash family from {0, 1}n to
{0, 1}k, and m ≥ k. Choose H1, · · · , Hm independently and uniformly at random from Hn,k.
We have the following:

1. if |S| ≤ 2k−1, then

Pr [{H1, . . . , Hm} isolates S] ≥ 1− 1

2m−k+1
;

2. if |S| > m2k, then

Pr [{H1, . . . , Hm} isolates S] = 0.

Proof. Item (2) follows easily from a counting argument. For each Hi, it can isolate at most
2k − 1 elements. (We map 2k − 1 elements to distinct locations, and all others to the last
spot in {0, 1}k.) Hence, {H1, . . . , Hm} isolates at most m(2k − 1) < m2k = |S| elements.

1GF stands for “Galois field”, which is just a synonym of “finite field”. It is known that a finite field exists
if and only if its size is pn for some prime p and natural number n ≥ 1. Moreover, such a field is unique.
The simplest example is GF(2) = F2 which contains only {0, 1}.
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For Item (1), by the definition of pairwise independent hash families,

Pr
H∈Hn,k

[H(x) = H(y)] =
∑

z∈{0,1}k
Pr

H∈Hn,k

[H(x) = H(y) = z] = 2−k.

Hence, by a union bound,

Pr
H∈Hn,k

[ H does not isolate x ] ≤
∑

y∈S\{x}

Pr
H∈Hn,k

[H(x) = H(y)] ≤ |S|
2k

≤ 1/2.

Since H1, · · · , Hm are chosen independently,

Pr
H1,...,Hm∈Hn,k

[ none of {Hi} isolates x ] ≤ 2−m.

Once again, by a union bound,

Pr
H1,...,Hm∈Hn,k

[{H1, . . . , Hm} does not isolate S]

≤
∑
x∈S

Pr
H1,...,Hm∈Hn,k

[{H1, . . . , Hm} does not isolate x]

≤ |S| 2−m ≤ 2−(m−k+1).

Taking the complement, we get Item (1).

3 Approximate counting
An interesting application of the isolation lemma is that given a Sat oracle, we can approx-
imately count #Sat. This is firstly shown by Sipser [Sip83] and is simplified by Valiant and
Vazirani [VV86] using the isolation lemma. Note that we may replace the Sat oracle by an
arbitrary NP-complete oracle and #Sat by any problem in #P, but we will stick to Sat and
#Sat for clarity.

Let S be the set of satisfying assignments to a formula φ with n variables, and Z := |S|.
Then 0 ≤ Z ≤ 2n. We may assume that Z ̸= 0, since this can be verified by a simple oracle
call. The basic idea is to find an integer 0 ≤ k ≤ n such that Z ≈ 2k. There must exist an
integer kS such that 2kS−1 ≤ Z ≤ 2kS . Finding this kS yields a good approximation to Z
(which can be amplified later).

We will test all k ∈ [n + 1], and set m = 2n in Lemma 2. Namely, we randomly pick
2n hash functions H1, · · · , H2n : {0, 1}n → {0, 1}k. By Lemma 2, if k ≥ kS + 1, isolation
happens with probability at least 1− 2−n. We use the Sat oracle to verify whether isolation
happens. In other words, for each k, we ask whether “∀x ∈ S, one of Hi isolates x?” This
can be expressed as a logical formula as follows. Firstly,

Hi isolates x ⇔ ∀y s.t. φ(y) = 1, and Hi(x) ̸= Hi(y).
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Then we can express the query as

∀x ∃i ∀y if φ(x) = φ(y) = 1 and x ̸= y, then Hi(x) ̸= Hi(y).

Although this looks like an ∀∃∀-expression, there are only 2n choices of i, and can thus be
rewritten with only one layer of ∀ quantifiers and a polynomial blow-up in its size. We take
its complement to get a proper Sat query.

By going through all of k, we found the smallest one such that isolation happens. Denote
it by k0. The probability that isolation does not happen for all k ≤ n + 1 is exponentially
small by Item (1) of Lemma 2. In particular, isolation happens for k = kS+1 with probability
at least 1− 2−n. Thus k0 ≤ kS + 1 with probability at least 1− 2−n.

On the other hand, by Item (2) of Lemma 2, we have that Z ≤ 2n2k0 . Let Ẑ := 2n2k0 .
We have that with probability at least 1− 2−n,

Ẑ ≥ Z ≥ 2kS−1 ≥ 2k0−2 =
Ẑ

8n
.

Hence, this gives us a randomized algorithm approximate Z within a ratio of O(n).
We can do even better by an amplification trick. Given φ, we construct a formula

φ(t) := φ1 ∧ φ2 ∧ . . . ∧ φt,

where each φi for i ∈ [t] is an independent copy of φ, and the integer t will be set later.
Notice that in order to obtain independent copies, each variable in φ is duplicated t times
in φ(t), namely, each xi is replaced by x

(1)
i , · · · , x(t)

i . Denote by Z(t) the number of solutions
to φ(t). It is easy to see that

Z(t) = Zt.

We use the randomized algorithm above to approximate Z(t), getting an estimate Ẑ(t). Since
φ(t) contains tn variables,

1

8nt
≤ Zt

Ẑ(t)
≤ 1

Let Ẑ =
(
Ẑ(t)

)1/t

be our final estimate. Then,

1

(8nt)1/t
≤ Z

Ẑ
≤ 1

The function (8nt)1/t goes to 1 very quickly as t goes to infinity. Suppose we want to estimate
Z within (1± ε) precision, then all we need is

1

(8nt)1/t
≥ 1

1 + ε
≥ 1− ε,
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or equivalently,

(1 + ε)t ≥ 8nt.

This can be achieved by letting t = O
(
n
ε

)
as the left is polynomial in n, and the right is

exponential in n. In summary, we have the following theorem.

Theorem 3. There is a randomized algorithm with a Sat-oracle, that approximates #Sat
within 1± ε and runs in time polynomial in n and ε−1.

Such an algorithm is usually called a fully polynomial-time randomized approximation
scheme (FPRAS).
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