INFR11102: Computational Complexity

Lecture 17: Approximate Counting

Lecturer: Heng Guo

1 Toda's theorem

One remarkable result, due to Seinosuke Toda [Tod91], shows that #P is more powerful than the whole of polynomial hierarchy.

Theorem 1. PH $\subseteq P^{\#SAT}$.

Toda's theorem is rather complicated and we will omit its proof. Details can be found in [AB09, Chapter 17.4].

On the other hand, given a SAT oracle, we can approximately count #SAT. Thus, approximately counting is at most NP-hard.

2 Isolation lemma

Our main tool for approximate counting is the isolation lemma, introduced by Valiant and Vazirani [VV86]. It also has a number of interesting applications related to BPP and the hardness of SAT when the formula has at most 1 satisfying assignment (called UNISAT). It relies on a notion called *pairwise independent hash functions*.

2.1 Pairwise independent hash functions

Fix some (discrete) domain D and range R. Let $\mathcal{H} = \{H_i\}_{i \in [k]}$ be a family of functions, where for each $i \in [k]$, H_i is a function $D \to R$. The family \mathcal{H} is said to be *pairwise independent* if for any two distinct $x, x' \in D$ and (not necessarily distinct) $y, y' \in R$,

$$\Pr_{i \in [k]} [H_i(x) = y \& H_i(x') = y'] = \frac{1}{|R|^2}.$$
(1)

Here the function H_i is chosen uniformly from the set \mathcal{H} . In other words, suppose $D = \{x_1, \dots, x_\ell\}$. Consider the random variables $Y_j = H_i(x_j)$ for $j \in [\ell]$, where the randomness comes from choosing $i \in [k]$ uniformly at random. Then, Y_j is uniform over R, by summing over y' in (1). Moreover, any two Y_j and $Y_{j'}$ are independent (hence the name "pairwise independent"). It is not necessary that all $\{Y_i\}$ are mutually independent.

The requirement may look rather demanding, but next we show that there is a simple construction if D and R are both finite fields. Suppose $D = R = \mathbb{F}$. Let $\mathcal{H} = \{H_{a,b}\}_{a,b\in\mathbb{F}}$ and

$$H_{a,b}(x) = ax + b.$$

So the random function is chosen by picking two random element a and b in \mathbb{F} . For any distinct $x, x' \in \mathbb{F}$ and $y, y' \in \mathbb{F}$ as in the requirement above, the event in (1) happens if and only if

$$a = (y - y')(x - x')^{-1},$$

$$b = y - (y - y')(x - x')^{-1} \cdot x.$$

Since $x \neq x'$ are fixed, as well as y and y', the right hand side are two fixed elements in \mathbb{F} . So, the event happens with probability $\frac{1}{|\mathbb{F}|} \cdot \frac{1}{|\mathbb{F}|} = \frac{1}{|\mathbb{F}|^2}$ as required.

In the applications, the most common setup is to take $\mathbb{F} = \mathrm{GF}(2^n)$,¹ which is the unique finite field of size 2^n . We view its elements as $\{0, 1\}$ vectors of length n, and we may take $D = R = \mathrm{GF}(2^n)$ in the construction above. Moreover, we can truncate the output up to size ℓ to get a pairwise independent hash function \mathcal{H} from $\{0, 1\}^n$ to $\{0, 1\}^\ell$ for any $\ell \leq n$. This explains the name "hash function". We denote such a family as $\mathcal{H}_{n,\ell}$.

2.2 Isolation

Let f be a hash function $D \to R$. If f(x) = f(y) for distinct $x, y \in D$, then this is a "collision". On the other hand, we say f isolates x (within a subset $S \subset D$) if there is no $y \in S$ such that f(y) = f(x). Moreover, we say that a set F of functions isolates x if $\exists f \in F$ isolates x, and F isolates a set $S \subseteq D$ if for any $x \in S$, F isolates x.

The isolation lemma says that, given a pairwise independent hash family and $S \subseteq D$, if S is "small" (in some precise ways), then with positive probability a random hash function isolates S. Otherwise S is too big and isolate won't happen.

Lemma 2. Let $S \subseteq \{0,1\}^n$, $\mathcal{H}_{n,k}$ be a pairwise independent hash family from $\{0,1\}^n$ to $\{0,1\}^k$, and $m \ge k$. Choose H_1, \cdots, H_m independently and uniformly at random from $\mathcal{H}_{n,k}$. We have the following:

1. if $|S| \leq 2^{k-1}$, then

$$\Pr[\{H_1, \dots, H_m\} \text{ isolates } S] \ge 1 - \frac{1}{2^{m-k+1}};$$

2. if $|S| > m2^k$, then

$$\Pr[\{H_1, ..., H_m\} \text{ isolates } S] = 0.$$

Proof. Item (2) follows easily from a counting argument. For each H_i , it can isolate at most $2^k - 1$ elements. (We map $2^k - 1$ elements to distinct locations, and all others to the last spot in $\{0, 1\}^k$.) Hence, $\{H_1, \ldots, H_m\}$ isolates at most $m(2^k - 1) < m2^k = |S|$ elements.

¹GF stands for "Galois field", which is just a synonym of "finite field". It is known that a finite field exists if and only if its size is p^n for some prime p and natural number $n \ge 1$. Moreover, such a field is unique. The simplest example is $GF(2) = \mathbb{F}_2$ which contains only $\{0, 1\}$.

For Item (1), by the definition of pairwise independent hash families,

$$\Pr_{H \in \mathcal{H}_{n,k}} \left[H(x) = H(y) \right] = \sum_{z \in \{0,1\}^k} \Pr_{H \in \mathcal{H}_{n,k}} \left[H(x) = H(y) = z \right] = 2^{-k}.$$

Hence, by a union bound,

$$\Pr_{H \in \mathcal{H}_{n,k}} \left[H \text{ does not isolate } x \right] \le \sum_{y \in S \setminus \{x\}} \Pr_{H \in \mathcal{H}_{n,k}} \left[H(x) = H(y) \right] \le \frac{|S|}{2^k} \le 1/2.$$

Since H_1, \dots, H_m are chosen independently,

$$\Pr_{H_1,\dots,H_m \in \mathcal{H}_{n,k}} [\text{ none of } \{H_i\} \text{ isolates } x] \le 2^{-m}$$

Once again, by a union bound,

$$\Pr_{H_1,\dots,H_m \in \mathcal{H}_{n,k}} [\{H_1,\dots,H_m\} \text{ does not isolate } S]$$

$$\leq \sum_{x \in S} \Pr_{H_1,\dots,H_m \in \mathcal{H}_{n,k}} [\{H_1,\dots,H_m\} \text{ does not isolate } x]$$

$$\leq |S| 2^{-m} \leq 2^{-(m-k+1)}.$$

Taking the complement, we get Item (1).

3 Approximate counting

An interesting application of the isolation lemma is that given a SAT oracle, we can approximately count #SAT. This is firstly shown by Sipser [Sip83] and is simplified by Valiant and Vazirani [VV86] using the isolation lemma. Note that we may replace the SAT oracle by an arbitrary NP-complete oracle and #SAT by any problem in #P, but we will stick to SAT and #SAT for clarity.

Let S be the set of satisfying assignments to a formula φ with n variables, and Z := |S|. Then $0 \leq Z \leq 2^n$. We may assume that $Z \neq 0$, since this can be verified by a simple oracle call. The basic idea is to find an integer $0 \leq k \leq n$ such that $Z \approx 2^k$. There must exist an integer k_S such that $2^{k_S-1} \leq Z \leq 2^{k_S}$. Finding this k_S yields a good approximation to Z (which can be amplified later).

We will test all $k \in [n + 1]$, and set m = 2n in Lemma 2. Namely, we randomly pick 2n hash functions $H_1, \dots, H_{2n} : \{0, 1\}^n \to \{0, 1\}^k$. By Lemma 2, if $k \ge k_S + 1$, isolation happens with probability at least $1 - 2^{-n}$. We use the SAT oracle to verify whether isolation happens. In other words, for each k, we ask whether " $\forall x \in S$, one of H_i isolates x?" This can be expressed as a logical formula as follows. Firstly,

$$H_i$$
 isolates $x \Leftrightarrow \forall y$ s.t. $\varphi(y) = 1$, and $H_i(x) \neq H_i(y)$.

Then we can express the query as

$$\forall x \exists i \forall y \text{ if } \varphi(x) = \varphi(y) = 1 \text{ and } x \neq y, \text{ then } H_i(x) \neq H_i(y).$$

Although this looks like an $\forall \exists \forall$ -expression, there are only 2n choices of i, and can thus be rewritten with only one layer of \forall quantifiers and a polynomial blow-up in its size. We take its complement to get a proper SAT query.

By going through all of k, we found the smallest one such that isolation happens. Denote it by k_0 . The probability that isolation does not happen for all $k \leq n+1$ is exponentially small by Item (1) of Lemma 2. In particular, isolation happens for $k = k_S + 1$ with probability at least $1 - 2^{-n}$. Thus $k_0 \leq k_S + 1$ with probability at least $1 - 2^{-n}$.

On the other hand, by Item (2) of Lemma 2, we have that $Z \leq 2n2^{k_0}$. Let $\widehat{Z} := 2n2^{k_0}$. We have that with probability at least $1 - 2^{-n}$,

$$\widehat{Z} \ge Z \ge 2^{k_S - 1} \ge 2^{k_0 - 2} = \frac{\widehat{Z}}{8n}$$

Hence, this gives us a randomized algorithm approximate Z within a ratio of O(n).

We can do even better by an amplification trick. Given φ , we construct a formula

$$\varphi^{(t)} := \varphi_1 \wedge \varphi_2 \wedge \ldots \wedge \varphi_t,$$

where each φ_i for $i \in [t]$ is an independent copy of φ , and the integer t will be set later. Notice that in order to obtain independent copies, each variable in φ is duplicated t times in $\varphi^{(t)}$, namely, each x_i is replaced by $x_i^{(1)}, \dots, x_i^{(t)}$. Denote by $Z^{(t)}$ the number of solutions to $\varphi^{(t)}$. It is easy to see that

$$Z^{(t)} = Z^t.$$

We use the randomized algorithm above to approximate $Z^{(t)}$, getting an estimate $\widehat{Z^{(t)}}$. Since $\varphi^{(t)}$ contains tn variables,

$$\frac{1}{8nt} \le \frac{Z^t}{\widehat{Z^{(t)}}} \le 1$$

Let $\widehat{Z} = \left(\widehat{Z^{(t)}}\right)^{1/t}$ be our final estimate. Then,

$$\frac{1}{\left(8nt\right)^{1/t}} \le \frac{Z}{\widehat{Z}} \le 1$$

The function $(8nt)^{1/t}$ goes to 1 very quickly as t goes to infinity. Suppose we want to estimate Z within $(1 \pm \varepsilon)$ precision, then all we need is

$$\frac{1}{(8nt)^{1/t}} \ge \frac{1}{1+\varepsilon} \ge 1-\varepsilon,$$

or equivalently,

$$(1+\varepsilon)^t \ge 8nt.$$

This can be achieved by letting $t = O\left(\frac{n}{\varepsilon}\right)$ as the left is polynomial in n, and the right is exponential in n. In summary, we have the following theorem.

Theorem 3. There is a randomized algorithm with a SAT-oracle, that approximates #SAT within $1 \pm \varepsilon$ and runs in time polynomial in n and ε^{-1} .

Such an algorithm is usually called a *fully polynomial-time randomized approximation* scheme (FPRAS).

References

- [AB09] Sanjeev Arora and Boaz Barak. Computational Complexity A Modern Approach. Cambridge University Press, 2009.
- [Sip83] Michael Sipser. A complexity theoretic approach to randomness. In *STOC*, pages 330–335. ACM, 1983.
- [Tod91] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877, 1991.
- [VV86] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor. Comput. Sci., 47(3):85–93, 1986.