
INFR11102: Computational Complexity 07/11/2019

Lecture 16: Counting complexity
Lecturer: Heng Guo

1 Lovász’s perfect matching algorithm
Let G = (V,E) be a bipartite graph with two equal parts. Namely, V = V1 ∪ V2 where V1

and V2 are disjoint, |V1| = |V2|, and E ⊆ V1 × V2. A perfect matching (PM) is a subset
M ⊆ E of edges so that every vertex is adjacent to exactly one edge in M . Alternatively, a
perfect matching M can be thought of as a permutation σM of [n], so that (i, σM(i)) ∈ E.

Name: Bi-PM
Input: A bipartite graph G with two equal parts.
Output: Does G have a perfect matching?

Let |V1| = |V2| = n. Let A be the n-by-n bi-adjacency matrix of G. Rows of A are
indexed by vertices in V1, and columns by vertices in V2. Au,v = 1 if (u, v) ∈ E and Au,v = 0
otherwise. The determinant of A is defined as

det(A) =
∑
σ∈Sn

(−1)sgn(σ)
n∏

i=1

Ai,σ(i),

where Sn is the symemtric group whose elements are permutations of [n]. Notice that if
det(A) ̸= 0, then we know that there must be some non-zero term, and thus G has a perfect
matching. However, if det(A) = 0, then it might be because G has no perfect matching, or
non-zero terms cancel. We need to figure out which is the case.

To get around this, we associate a variable xu,v to each edge (u, v). In other words,
consider AX , a n-by-n matrix, where Au,v = xu,v if (u, v) ∈ E, and 0 otherwise. Then
det(AX) becomes a polynomial in variables (xu,v)(u,v)∈E. Notice that if G has a perfect
matching M , then σM induces a monomial in det(AX), and det(AX) is not identically zero.
Otherwise if G does not have a perfect matching, then det(AX) is identically zero.

Lovász’s algorithm [Lov79] is thus to simply test whether det(AX) is identically zero, by
randomly assigning values to these variables. The algorithm works because of the following
lemma, due to Zippel [Zip79] and Schwartz [Sch80].

Lemma 1. Let p(x1, x2, · · · , xn) be a non-zero polynomial of degree d. Let S be a finite set
of integers. Then, if a1, · · · , an are randomly chosen from S (with replacement), then

Pr[p(a1, . . . , an) ̸= 0] ≥ 1− d

|S|
.

1

The proof of Lemma 1 can be found in [AB09, Lemma A.36].
The degree of det(AX) is at most n. To apply Lemma 1 to Bi-PM, we just randomly

assign values from [4n] to xi,j, and then evaluate the determinant. (The determinant has
exponentially many terms, but it can be evaluated efficiently using, say, Gaussian elimina-
tion.) Under this random assignment, by Lemma 1, det(AX) ̸= 0 with probability at least
1− n

4n
= 3/4 if G has a PM, and det(AX) = 0 with probability 1 if G does not have a PM.

If we want to get better success probability, then we can simply run it again if det(AX) = 0.
After t independent runs, the error probability goes down to 4−t.

The advantage of this algorithm is that det(·) is not only efficiently computable, it can
even be computed efficiently in parallel. It is contained in a complexity class called NC, which
captures efficient parallel computation. For more details, see [AB09, Chapter 6.7.1].

You might have noticed that the following quantity, called the permanent of the matrix,

per(A) :=
∑
σ∈Sn

n∏
i=1

Ai,σ(i), (1)

does not have the annoying cancellation, and per(A) indeed counts the number of PM’s in
G. Unfortunately, per(A) is a quantity intractable to compute, and it relates to counting
complexity.

2 Counting complexity
Recall that for NP problems, we want to decide whether there exists a certificate. There
are other situations where we are interested in, instead, the number of certificate. It often
has something to do with computing the marginal probability of various random variables.
The following counting complexity class #P is introduced by Les Valiant [Val79a, Val79b] to
capture the apparent intractability of counting problems.

Definition 1. A function f : {0, 1}∗ → N is in #P if there exist a polynomial-time TM M
and a polynomial p(·) such that for every x ∈ {0, 1}∗:

f(x) = |{y | |y| ≤ p(|x|) and M(x, y) = 1}| .

To define #P-hard problems, we need the notion of Turing reductions. In Turing’s original
paper [Tur37], he defined oracle Turing Machines. Let O be a language. We equip a TM M
with an oracle O, denoted MO, if M has a special tape, and during the execution of M , it
can write x on the special tape, and ask the oracle to get whether x ∈ O in one step. Oracle
TMs relate to Turing reductions. Then we say A is Turing reducible to B, denoted A ≤t B,
if there exists a TM M with oracle B that computes A. Again, the intuition of this notation
is that A is easier than B. The oracle should be thought of as some subroutine that we can
invoke.

#P-hardness and #P-completeness are defined with respect to Turing reductions.

2

Definition 2. A function f is said to be #P-hard if for any function g ∈ #P, there is a
polynomial-time TM M with oracle f that computes g.

A function f is #P-complete if f is #P-hard and f ∈ #P.
The most natural #P-complete problem is the counting version of Sat.

Name: #Sat
Input: A CNF formula φ.
Output: The number of satisfying assignment of φ.
Theorem 2. #Sat is #P-complete.

The proof of Theorem 2 is the same as that of the Cook-Levin theorem. One only need
to verify that the number of certificates is preserved through the reduction.

It is easy to see from the definition that, counting problems are harder than the corre-
sponding decision problems. Indeed, there are situations where finding a certificate is easy
but counting the number is hard. Recall the permanent per(A) of a matrix A defined in (1).

Valiant [Val79a] showed that per(A) is #P-complete, even if A is a {0, 1}-matrix. Hence
per(A) is a hard to compute quantity. In fact, the original motivation of introducing the
complexity class #P is to capture this apparent intractability of the permanent. As described
before, when A is a {0, 1}-matrix, per(A) counts the number of perfect matchings in the
corresponding bipartite graph.

Name: #PM
Input: A graph G.
Output: The number of perfect matchings in G.

Clearly computing per(A) is a special case of #PM, when the input is restricted to
bipartite graphs.
Theorem 3. #PM is #P-complete.

We will omit the proof of Theorem 3. Full details can be found in Valiant’s original paper
[Val79a] or [AB09, Theorem 17.11]. Essentially, the proof is a “local” reduction in which
gadgets are built to mimic variables and clauses of a CNF formula. The main reason we
omit it is that these gadgets are highly complicated, and Valiant in [Val79a] explained that
why smaller gadgets do not exist. Nonetheless, the existence of these gadgets seems rather
“coincidental”.

Note that, in contrast to Theorem 3, deciding whether PM exists (or finding one if so)
can be done in polynomial-time by Edmonds’s algorithm [Edm65], even in general graphs.

A matching is a subset of edges so that every vertex is incident to at most one edge. In
other words, it is not necessary that all vertices are matched in a matching, unlike in a perfect
matching. What we will show, is that counting (not necessarily perfect) matchings is still
#P-complete. The reduction will illustrate an important technique of counting reductions,
called “interpolation”. It also showcases the difference between many-one reductions and
Turing reductions.

3

Name: #Matching
Input: A graph G.
Output: The number of matchings in G.

Theorem 4. #Matching is #P-complete.

Proof. We construct a Turing reduction #PM ≤t #Matching. Given an instance G =
(V,E) to #PM, we construct a series of new graphs Gt. For each t ≥ 0, we add t new
vertices, uv

1, · · · , uv
t for each v ∈ V , and connect every one of them to v. Thus, G = G0.

Let Zk be the number of matchings in G of size n−k (we measure the size of a matching
by the number of vertices matched). Then the number of perfect matchings is Z0. The total
number of matchings, denoted M0 is thus

M0 =
n∑

k=0

Zk.

On the other hand, for each matching of size n−k in G, there are (t+1)k distinct matchings
corresponding to it in Gt, by matching the k unmatched vertices to the t new ones. Thus,
in Gt, the number of matchings is

Mt =
n∑

k=0

(t+ 1)kZk.

Thus, we can evaluate Mt by an oracle to #Matching for t = 0, 1, · · · , n. We view (Zk)
as variables, and then these evaluations form a linear system:

Z0 + Z1 + · · ·+ Zn = M0,

Z0 + 2Z1 + · · ·+ 2nZn = M1,

... ...
Z0 + (t+ 1)Z1 + · · ·+ (t+ 1)nZn = Mt,

... ...
Z0 + (n+ 1)Z1 + · · ·+ (n+ 1)nZn = Mn.

The coefficient matrix of the above system is called a Vandermonde matrix:
1 1 · · · 1
1 2 · · · 2n

...
1 n+ 1 · · · (n+ 1)n

 .

Its determinant is
∏

1≤i<j≤n+1(j− i) ̸= 0. Thus, we can solve this linear system, and recover
Z0, · · · , Zn. In particular, Z0 is what we want, namely the number of perfect matchings
in G.

4

This reduction is called the “interpolation” method. The reason is that if we view Mt as
a polynomial in (t + 1) (often called the matching polynomial), then what we are doing is
to recover the coefficients of Mt. Apparently this is not a many-one reduction, and to find
a matching is a trivial problem in G (we can just take the empty one). Even finding the
maximum weight matching is in P.

3 Variants of decision problems
Decision problems are important in the study computational complexity, but they are not
the only kind of problems we study. Typical variants are search problems, optimization
problems, and counting problems.

For example, Sat asks whether a given CNF formula φ is satisfiable. We may also want
to find a satisfying assignment, if any. This is the search version. The optimization version,
denoted MaxSat, asks at most how many clauses can be satisfied, and the counting version,
denoted #Sat, asks the number of satisfying assignments.

Obviously all three variants are harder than Sat itself, but we can indeed solve the
optimization version by binary search if we have an algorithm to (the threshold version of)
Sat. We can also solve the search version if we have an algorithm to Sat. This is captured
by the notion of self-reducibility. On the other hand, #Sat, as we will see soon, is much
harder than NP in some precise sense.

Now, suppose we have a subroutine to solve Sat, and the answer is yes for some φ. We
can find a satisfying assignment by fixing variables one by one. When we fix x1, we use the
subroutine for two restrictions of φ where x1 is given True / False respectively, and proceed
with the one satisfiable. (It must exist, and if both are satisfiable, we pick an arbitrary one.)

This property that a problem can be solved given an algorithm solving smaller instances
is called self-reducibility. We will not formally define it here, as multiple valid definitions
exist. We have encountered this property in the proof of Karp-Lipton theorem.

On the other hand, search problem is not always as easy as its decision version. Testing
whether a number is composite is now known to be in P [AKS04], but to find a prime factor
is quite difficult, with no known efficient algorithms.
Remark (Bibliographic). Relevant chapters are [AB09, Chapter 17] and [Pap94, Chapter 18].

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Ann. of
Math. (2), 160(2):781–793, 2004.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17(3):449–467, 1965.

5

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In FCT,
pages 565–574, 1979.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, 1980.

[Tur37] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., 2(1):230–265, 1937.

[Val79a] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189–201, 1979.

[Val79b] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM
J. Comput., 8(3):410–421, 1979.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM,
volume 72 of LNCS, pages 216–226. Springer, 1979.

6

	Lovász's perfect matching algorithm
	Counting complexity
	Variants of decision problems

