
INFR11102: Computational Complexity 05/11/2019

Lecture 15: Upper bounds for BPP
Lecturer: Heng Guo

1 An alternative definition of BPP

Similar to the verification characterization of NP, we also have an alternative definition of
BPP, using deterministic TMs.

Definition 1 (BPP, alternative). A language L is in BPP if there exists a polynomial-time
TM M and a polynomial p(·), such that for every x ∈ {0, 1}∗, Prr[M(x, r) = L(x)] ≥ 3/4,
where r is drawn uniformly at random from all strings of length p(|x|).

In other words, for L ∈ BPP, there is a TM such that, if x ∈ L, then at least 3/4 fraction
of all certificates is valid, and if x ̸∈ L, then at most 1/4 fraction is. Recall that if L ∈ NP,
then there is a TM such that x ∈ L if and only if there is at least one certificate.

The equivalence between Definition 1 and the previous definition using PTM can be
shown in the same way as the equivalence between two definitions of NP. The standard
amplification method (using Chernoff bound) also applies to this definition. We can define
RP and coRP similarly in this way as well. An immediate consequence of such definitions is
that RP ⊆ NP and coRP ⊆ coNP.

2 BPP in P/poly

It is obvious that RP ⊆ NP — RP requires at least 3/4 fraction of certificates are valid, whereas
NP merely requires at least one. However, what about BPP? An easy upper bound is that
BPP ⊆ PSpace, since we can use the polynomial space to go through all certificates. It is not
a priori obvious that BPP is in any class below it.

Our first upper bound is that BPP can be simulated by the circuit model, shown by
Adleman [Adl78].

Theorem 1. BPP ⊆ P/poly.

Proof. Let L ∈ BPP be a language. Because of the amplification of BPP, there is a TM M
such that Pr[M(x, r) ̸= L(x)] ≤ 2−n−1, where x is an input, n = |x|, r ∈ {0, 1}m is the
random choices of length m, bounded by some polynomial in n. For every x, there are at
most 2m · 2−n−1 random choices that lead to a wrong output. Hence, the total amount of
such “bad” strings over all possible inputs of length n is at most 2n ·2m ·2−n−1 = 2m−1. There
are 2m choices of r in total, meaning that there exists at least one string that is correct for
all input x of length n. Let M ′ be a TM with such a “universally good” r as the advice.
Then M ′ is correct on all inputs, implying that L ∈ P/poly.

1

In particular, Theorem 1, together with the Karp-Lipton theorem, implies that if Sat
has a BPP algorithm, then PH collapses. This is an evidence against solving Sat efficiently
by randomized algorithms.

3 BPP in Σp
2

Another upper bound for BPP is that it is inside the polynomial hierarchy, shown by Sipser
[Sip83] and Lautemann [Lau83].

Theorem 2. BPP ⊆ Σp
2.

For a language L ∈ BPP and the corresponding M in Definition 1, with proper amplifi-
cation, we have that

x ∈ L ⇒ Pr
r
[M(x, r) = 1] ≥ 1− 2−n;

x ̸∈ L ⇒ Pr
r
[M(x, r) = 1] ≤ 2−n,

where r is a uniformly at random string in {0, 1}m for m > n (because we can always append
some useless random bits) and m is bounded by a polynomial in n. Hence, there is a huge
gap between the two cases in terms of the fraction of certificates (almost-all vs. almost-none).
One way to distinguish the two cases is to use “bit masks”. For two vectors x and y, let
x ⊕ y be the bitwise XOR, and for a set S, S ⊕ x = {x ⊕ y | y ∈ S}. Let k :=

⌈
m
n

⌉
+ 1 so

that m
n
< k < m

n
+ 2.

Lemma 3. Let n be a sufficiently large integer, and m an integer bounded by a polynomial in
n. For every set S ⊆ {0, 1}m with |S| ≤ 2m−n and every k vectors u1, · · · , uk, ∪k

i=1 (S ⊕ ui) ̸=
{0, 1}m.

Proof. Obviously, |S| = |S ⊕ ui|. Hence,
∣∣∪k

i=1 (S ⊕ ui)
∣∣ ≤ k |S| ≤ (m

n
+2)2m−n < m+2n

n2n
· 2m.

Since m is bounded by a polynomial in n,
∣∣∪k

i=1 (S ⊕ ui)
∣∣ < 2m as long as n is sufficiently

large.

What Lemma 3 is saying is that in the “no” case, even if we shift the set of certificates
k times, it cannot cover the whole space. In contrast, we have the following.

Lemma 4. Let n be a sufficiently large integer, and m an integer bounded by a polynomial
in n. If S ⊆ {0, 1}m with |S| ≥ (1− 2−n) 2m, then there exist k vectors u1, · · · , uk such that
∪k

i=1 (S ⊕ ui) = {0, 1}m.

Proof. We draw k vectors uniformly at random from {0, 1}m as the bit masks u1, · · · , uk.
To show the lemma, we need to show that with strictly positive probability, ∪k

i=1 (S ⊕ ui) =
{0, 1}m. For each r ∈ {0, 1}m, let Br be the “bad event” that r ̸∈ ∪k

i=1 (S ⊕ ui). Then what
we want to show is that Pr

[∧
r∈{0,1}m ¬Br

]
> 0, or equivalently, Pr

[∨
r∈{0,1}m Br

]
< 1.

2

By the union bound,

Pr

 ∨
r∈{0,1}m

Br

 ≤
∑

r∈{0,1}m
Pr[Br].

For an individual r and any i ∈ [k], Pr[r ̸∈ (S⊕ui)] = Pr[r⊕ui ̸∈ S] ≤ 2−n. This is because
that since ui is uniformly at random, r ⊕ ui is also uniformly at random. Since ui’s are
mutually independent and k > m

n
,

Pr[Br] = Pr

[∧
1≤i≤k

r ̸∈ (S ⊕ ui)

]
=

k∏
i=1

Pr[r ̸∈ (S ⊕ ui)] ≤ 2−nk < 2−m.

Hence, Pr
[∨

r∈{0,1}m Br

]
< 2m · 2−m = 1, which is what we want to show.

The proof of Lemma 4 is called the probabilistic method, introduced by Paul Erdős. The
usual setup is that, in order to show the existence of some object, we show that drawing a
random object from a larger space, the probability of the desired one is strictly positive. For
more of its use, see the fantastic book by Alon and Spencer [AS16].

Proof of Theorem 2. Let L be a language in BPP and M the corresponding TM as in Defi-
nition 1, with proper amplification. Lemma 3 and Lemma 4 imply that x ∈ L if and only
if

∃u1, . . . , uk ∈ {0, 1}m, ∀r ∈ {0, 1}m, r ∈
k∪

i=1

(S ⊕ ui).

This is equivalent to

∃u1, . . . , uk ∈ {0, 1}m, ∀r ∈ {0, 1}m,
k∨

i=1

M(x, r ⊕ ui) = 1.

Recall that k =
⌈
m
n

⌉
+1. Thus

∨k
i=1M(x, r⊕ui) can be simulated by a single TM with only

polynomial overhead in its running time, so this is a Σp
2 statement and L ∈ Σp

2.

It is easy to see that BPP is closed under complement (BPP = coBPP). Namely, if L ∈ BPP,
then L ∈ BPP as well (why?). Hence, Theorem 2 implies that BPP ⊆ Σp

2∩Π
p
2, which is “barely”

above NP.
Remark (Bibliographic). Sipser [Sip83] showed that BPP ⊆ PH, and Lautemann [Lau83]
improved it to BPP ⊆ Σp

2 ∩ Πp
2. Relevant chapters are [AB09, Chapter 7.5] and [Pap94,

Chapter 11].

3

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[Adl78] Leonard M. Adleman. Two theorems on random polynomial time. In FOCS, pages
75–83, 1978.

[AS16] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, fourth edition,
2016.

[Lau83] Clemens Lautemann. BPP and the polynomial hierarchy. Inf. Process. Lett.,
17(4):215–217, 1983.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages
330–335. ACM, 1983.

4

	An alternative definition of BPP
	BPP in PPoly
	BPP in Sigma2p

