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1 Randomised computation
The standard class for efficient randomised computation is called BPP (bounded-error prob-
abilistic polynomial-time).

Definition 1. A language L is in BPP if there exists a PTM P and a polynomial p(·), such
that P runs in time p(n) and

• if x ∈ L, then Pr[P (x) = 1] ≥ 3/4;

• if x ̸∈ L, then Pr[P (x) = 1] ≤ 1/4.

In other words, the requirement is that Pr[P (x) = L(x)] ≥ 3/4. The constant 3/4
in Definition 1 is not essential, as long as it is strictly larger than 1/2. This is captured
by a notion called “amplification”. On the other hand, if it is 1/2, then the class defined
would be (under standard assumptions) more powerful. That class is called PP, probabilistic
polynomial-time. Historically PP is defined earlier than BPP, and as it turns out, PP is the
wrong definition for efficient randomised computation.

We also have the “one-sided” error version of BPP, called RP (randomised polynomial-
time).

Definition 2. A language L is in RP if there exists a PTM P and a polynomial p(·), such
that P runs in time p(n) and

• if x ∈ L, then Pr[P (x) = 1] ≥ 3/4;

• if x ̸∈ L, then Pr[P (x) = 1] = 0.

In other words, an RP algorithm never errs if x ̸∈ L, but it may reject some x ∈ L.
The complementary class coRP is defined in the usual way:

coRP := {L | L ∈ RP}.

There is also a “zero-error” version, called ZPP.

Definition 3. A language L is in ZPP if there exists a PTM P and a polynomial p(·), such
that the expected running time of P is at most p(n) and if P halts on input x, P (x) = L(x).
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In fact ZPP = RP ∩ coRP. To show ZPP ⊆ RP, we just run the ZPP algorithm, and answer
0 if the we have used, say, 4 times the expected running time. The probability for that to
happen is at most 1/4, due to Markov’s inequality.

Lemma 1 (Markov’s inequality). Let X be a non-negative random variable. For any a > 0,

Pr[X ≥ a] ≤ EX

a
.

Proof. Let I be an indicator variable for the event X ≥ a. Namely

I =

{
1 if X ≥ a;
0 if X < a.

Then, E I = Pr[X ≥ a]. Note that I ≤ X
a

in all circumstances. (This is called stochastic
domination.) Then

Pr[X ≥ a] = E I ≤ E
[
X

a

]
=

EX

a
.

By a similar argument, ZPP ⊆ coRP, implying that ZPP ⊆ RP ∩ coRP.
On the other hand, the ZPP algorithm for a language in L ∈ RP∩ coRP is to run both the

RP and the coRP algorithms simultaneously. If one correct answer is obtained, then we accept
it. Otherwise we restart and do it again. It is easy to check that the restarting probability
is at most 1/4, and thus the total expected running time T satisfies

T ≤ 3

4
T0 +

1

4
(T + T0),

where T0 is the maximum running time of the RP and coRP algorithms. Solving it gives us
T ≤ 4T0/3, which is still a polynomial.

2 Amplification of BPP
Amplification for RP algorithm is straightforward — just run it many times.

For BPP, the constant 3/4 in Definition 1 can be replaced with any constant > 1/2. In fact,
even just barely larger than 1/2 is enough (but not 1/2). This is captured by the following
amplification theorem. In fact, the error probability can be amplified to exponentially small.

Theorem 2. Let L be a language and suppose that there is a polynomial-time PTM P and
a constant c such that for every x, Pr[P (x) = L(x)] ≥ 1/2 + |x|−c. Then for every constant
d > 0, there is a polynomial-time PTM P ′ such that for every x, Pr[P ′(x) = L(x)] ≥
1− exp(− |x|d).1

1exp(x) is a shorthand for ex.
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The idea is simple: P ′ will just run P many times and then take a majority vote. In
order to bound the error probability, we will need the so-called “Chernoff bound”.

Lemma 3 (Chernoff Bounds). Let X1, · · · , Xn be mutually independent, identically dis-
tributed (i.i.d.) random variables over {0, 1}, with probability p to be 1. For any 0 < ε ≤ 1,

Pr

[
n∑

i=1

Xi ≥ (1 + ε)pn

]
≤ exp

(
−ε2pn

3

)
;

Pr

[
n∑

i=1

Xi ≤ (1− ε)pn

]
≤ exp

(
−ε2pn

3

)
.

Note that the form above is not the strongest possible, but it is useful, neat, and easy
to remember. A more general form and proofs can be found in [AB09, Theorem A.14].
Lemma 3 is proved via applying Markov’s inequality, Lemma 1, on a suitable exponential
random variable.

What Lemma 3 is saying is that if we have a number of independent random variables,
then their sum cannot deviate from the mean by too much. In particular, it implies that
with constant probability, the deviation is within O(

√
n).

Proof of Theorem 2. As said earlier, P ′ will run P for s = 24n2c+d times and then take a
majority vote, where n = |x| is the input length. Let Xi be the output of the ith run and
X =

∑s
i=1Xi. Let p = 1/2 + n−c. If the majority vote went wrong, then roughly n−cs of all

these runs are wrong, which would have very small probability due to Lemma 3 since we set
s ≫ n2c.

To be more precise, let us assume that x ∈ L. (The other case is completely symmetric.)
Then, the output is wrong, if and only if X < s/2. Namely, we can set ε = n−c/2 in
Lemma 3, so that (1− ε)p > 1/2, and

Pr[X < s/2] ≤ Pr[X < (1− ε)ps]

≤ exp

(
−n−2c(1/2 + n−c)s

12

)
≤ exp

(
−n−2cs

24

)
= exp

(
−nd

)
.

This finishes the proof.

3 Examples
Can we solve Sat using randomised algorithms? A natural attempt is then to randomly
assign values to variables, and test if the assignment is satisfying. This will not work because
the probability that a random assignment is satisfying is exponentially small. Thus, although
we will never accept an unsatisfying formula, we will not accept a satisfying formula either
until exponential time is spent.
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The key to design a randomised algorithm is thus to find a good trial that will succeed
with good probability.

3.1 Prime number testing
Recall the problem PRIMES, which asks to determine whether an input integer (in binary) is
prime. Note that PRIMES can be solved in polynomial-time [AKS04], but the deterministic
algorithm is very complicated. Here we will see a couple of efficient randomised algorithms
that are used in practise.

We may assume the number to test is odd throughout. By Fermat’s little theorem, we
know that

ap−1 ≡ 1 mod p (1)

if p is a prime number and 1 ≤ a < p. Thus, for an input n, we may randomly pick a from
1, 2, · · · , n− 1. If an−1 ̸≡ 1 mod n, then we know that n is not a prime. However, this test
is not efficient in that the success probability is small.

A more efficient test is to test a
n−1
2 . By (1), it must be that a

p−1
2 ≡ ±1 mod p for

a ∈ {1, 2, · · · , p− 1} and a prime p. It is an easy fact that

a
p−1
2 ≡ 1 mod p if and only if ∃q s.t. q2 ≡ a mod p. (2)

The latter fact can be efficiently decided using the law of quadratic reciprocity, and thus we
may randomly pick a and verify (2). Solovay and Strassen [SS77] showed that a single run
of this test succeeds with > 1/2 probability. Thus, if n passed k such tests, then we are sure
that n is a prime with probability 1− 2−k.

An even more efficient test is the Miller-Rabin test. We go back to (1). We know that
p− 1 must be an even number, and assume that p− 1 = 2kt. Then (1) can be rewritten as

(at − 1)(at + 1)(a2t + 1) · · · (a2k−1t + 1) ≡ 0 mod p. (3)

Thus it must be that either at ≡ 1 mod p, or ∃i ≤ k − 1, a2it ≡ −1 mod p. We say that a
is a Miller-Rabin witness for an odd number n if all factors in (3) are non-zero. Namely, for
n− 1 = 2kt, at ̸≡ 1 mod n and ∀i ≤ k − 1, a2it ̸≡ −1 mod n.

Miller [Mil76] proposed to use the idea above to do primality testing, and but his original
algorithm requires generalised Riemann hypothesis. Rabin [Rab80] and Monier [Mon80]
independently showed that if n is not a prime, then there are more than 3

4
fraction Miller-

Rabin witnesses amongst natural numbers less than n. Thus, a single run of the algorithm
succeeds with probability at least 3/4, if we pick a uniformly at random. If n passed k such
tests, then we are sure that n is a prime with probability 1− 4−k.

All of the algorithms above are coRP algorithms for PRIMES as they will always accept
primes but sometimes not reject composites.
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