
INFR11102: Computational Complexity 29/10/2019

Lecture 13: More on circuit models; Randomised Computation
Lecturer: Heng Guo

1 TM taking advices
An alternative way to characterize P/poly is via TMs that take advices.

Definition 1. For functions F : N → N and A : N → N, the complexity class DTime[F]/A
consists of languages L such that there exist a TM with time bound F (n) and a sequence
{an}n∈N of “advices” satisfying:

• |an| ≤ A(n);

• for |x| = n, x ∈ L if and only if M(x, an) = 1.

The following theorem explains the notation P/poly, namely “polynomial-time with poly-
nomial advice”.

Theorem 1. P/poly =
∪

c,d∈N DTime[n
c]/nd.

Proof. If L ∈ P/poly, then it can be computed by a family C = {C1, C2, · · · } of Boolean
circuits. Let an be the description of Cn, and the polynomial time machine M just reads
this description and simulates it. Hence L ∈

∪
c,d∈N DTime[n

c]/nd .
For the other direction, if a language L can be computed in polynomial-time with poly-

nomial advice, say by TM M with advices {an}, then we can construct circuits {Dn} to
simulate M , as in the theorem P ⊂ P/poly in the last lecture. Hence, Dn(x, an) = 1 if
and only if x ∈ L. The final circuit Cn just does exactly what Dn does, except that Cn

“hardwires” the advice an. Namely, Cn(x) := Dn(x, an). Hence, L ∈ P/poly.

2 Karp-Lipton Theorem
Dick Karp and Dick Lipton showed that NP is unlikely to be contained in P/poly [KL80].
Since P ⊂ P/poly, if we could rule out the possibility that NP ⊆ P/poly, then we would have
separated P and NP. Karp-Lipton theorem stirred a lot of effort trying to show circuit lower
bounds. Indeed many successes followed, but unfortunately, we hit some barriers later on.

Theorem 2. If NP ⊆ P/poly, then PH = Σp
2.

1

Proof. As shown before, we just need to show that Πp
2 ⊆ Σp

2 to conclude PH = Σp
2. Let

L ∈ Πp
2. Then, there exists a poly-time TM M such that

x ∈ L ⇔ ∀y∃z, M(x, y, z) = 1, and y and z are poly-size.

All strings appear in this proof actually have polynomial length, and thus we use notations
∃p and ∀p to denote this. Due to the Cook-Levin theorem, the expression ∃z, M(x, y, z) = 1
can be converted in polynomial-time to a CNF formula φ such that

x ∈ L ⇔ ∀py, φ(x, y) ∈ Sat. (1)

To show L ∈ Σp
2, we need to somehow change the quantifier in (1).

Our assumption is that NP ∈ P/poly, namely Sat has a polynomial-size circuit family
C = {C1, C2, · · · }.

For an input x, |x| = n, we give an Σp
2 algorithm to decide whether x ∈ L. We first guess

a circuit C for Sat. It may have two types of error: φ ∈ Sat but C(φ) = 0 or φ ̸∈ Sat
but C(φ) = 1. There is at least one correct guess, namely Cp(n) where p(n) = |φ(x, y)|, that
works correctly on φ(x, y) by assumption.

For any such guess C, we construct a TM M ′ on input (C,φ) so that its error is “one-
sided”. It relies on the fact that Sat is self-reducible. Namely given an oracle to the decision
version, we can efficiently find a solution. M ′ takes C as a subroutine, and if C answers
“Yes”, then M ′ proceeds to find a satisfying assignment by repeatedly asking C. If there is
any inconsistency from C (namely C says that a formula is satisfiable but both assignment
of some variable x make it unsatisfiable), or the final assignment is not satisfying, then
M ′ rejects. Otherwise M ′ accepts if C accepts. This machine M ′ never accepts a formula
φ ̸∈ Sat, but it may reject φ ∈ Sat if C is an incorrect guess for Sat.

Now, we claim the following:

x ∈ L ⇔ ∃pC∀py, M ′(C,φ(x, y)) = 1. (2)

Comparing to (1), we have changed the order of quantifiers, and the right hand side of (2)
can be easily converted to a Σp

2 expression (namely compute φ(x, y) first). What we are left
to do is to verify (2).

• If x ∈ L, then there is a correct guess Cp(n) making the right hand side of (2) true.

• If x ̸∈ L, then by (1), any y0 will make φ(x, y0) ̸∈ Sat. Recall that M ′, whatever the
guess C is, never accepts φ ̸∈ Sat. Hence, the right hand side of (2) is false.

Why doesn’t the proof above work if we don’t construct M ′ and simply use C?
Remark (Bibliographic). Karp and Lipton first proved a weaker result than Theorem 2,
namely collapsing to the third level of PH. In their paper [KL80] they attribute this stronger
version to Mike Sipser. The proof given here uses an idea first noted by John Hopcroft.

Relevant chapters are [AB09, Chapter 6.4] and [Pap94, Chapter 17].

2

3 Randomised computation
A great discovery in the theory of computation is the power of randomness. There are a
lot of surprising randomised algorithms discovered since the 80s. Examples include, primal-
ity testing [Mil76, Rab80], polynomial identity testing [Zip79, Sch80], volume computation
[DFK91], and many more.

To formalize the idea of randomised computation, we need the notion of a probabilistic
Turing Machine (PTM).

A probabilistic Turing Machine is a TM with two transition functions δ0 and δ1. At every
step of an execution with input x, we apply δ0 with probability 1/2, and δ1 otherwise. For
a PTM M , its output M(x) is now a random variable. We say M runs in time T (n) if for
any input of length n, M halts within T (n) time regardless of the random choices made.

The standard class for efficient randomised computation is called BPP (bounded-error
probabilistic polynomial-time).

Definition 2. A language L is in BPP if there exists a PTM P and a polynomial p(·), such
that P runs in time p(n) and

• if x ∈ L, then Pr[P (x) = 1] ≥ 3/4;

• if x ̸∈ L, then Pr[P (x) = 1] ≤ 1/4.

In other words, the requirement is that Pr[P (x) = L(x)] ≥ 3/4. The constant 3/4
in Definition 2 is not essential, as long as it is strictly larger than 1/2. This is captured
by a notion called “amplification”. On the other hand, if it is 1/2, then the class defined
would be (under standard assumptions) more powerful. That class is called PP, probabilistic
polynomial-time. Historically PP is defined earlier than BPP, and as it turns out, PP is the
wrong definition for efficient randomised computation.

We also have the “one-sided” error version of BPP, called RP (randomised polynomial-
time).

Definition 3. A language L is in RP if there exists a PTM P and a polynomial p(·), such
that P runs in time p(n) and

• if x ∈ L, then Pr[P (x) = 1] ≥ 3/4;

• if x ̸∈ L, then Pr[P (x) = 1] = 0.

In other words, an RP algorithm never errs if x ̸∈ L, but it may reject some x ∈ L.
Remark (Bibliographic). Relevant chapters are [AB09, Chapter 7.3, 7.4] and [Pap94, Chap-
ter 11].

3

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[DFK91] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time
algorithm for approximating the volume of convex bodies. J. ACM, 38(1):1–17,
1991.

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform
and uniform complexity classes. In STOC, pages 302–309. ACM, 1980.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Syst.
Sci., 13(3):300–317, 1976.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory,
12(1):128 – 138, 1980.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, 1980.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM,
volume 72 of LNCS, pages 216–226. Springer, 1979.

4

	TM taking advices
	Karp-Lipton Theorem
	Randomised computation

