INFR11102: Computational Complexity

Lecture 13: More on circuit models; Randomised Computation

Lecturer: Heng Guo

1 TM taking advices

An alternative way to characterize $P_{/poly}$ is via TMs that take advices.

Definition 1. For functions $F : \mathbb{N} \to \mathbb{N}$ and $A : \mathbb{N} \to \mathbb{N}$, the complexity class $\mathsf{DTime}[F]_{/A}$ consists of languages L such that there exist a TM with time bound F(n) and a sequence $\{a_n\}_{n\in\mathbb{N}}$ of "advices" satisfying:

- $|a_n| \leq A(n);$
- for |x| = n, $x \in L$ if and only if $M(x, a_n) = 1$.

The following theorem explains the notation $P_{/poly}$, namely "polynomial-time with polynomial advice".

Theorem 1. $P_{/poly} = \bigcup_{c,d \in \mathbb{N}} DTime[n^c]_{/n^d}$.

Proof. If $L \in P_{/poly}$, then it can be computed by a family $\mathcal{C} = \{C_1, C_2, \cdots\}$ of Boolean circuits. Let a_n be the description of C_n , and the polynomial time machine M just reads this description and simulates it. Hence $L \in \bigcup_{c,d \in \mathbb{N}} \mathsf{DTime}[n^c]_{/n^d}$.

For the other direction, if a language L can be computed in polynomial-time with polynomial advice, say by TM M with advices $\{a_n\}$, then we can construct circuits $\{D_n\}$ to simulate M, as in the theorem $P \subset P_{/poly}$ in the last lecture. Hence, $D_n(x, a_n) = 1$ if and only if $x \in L$. The final circuit C_n just does exactly what D_n does, except that C_n "hardwires" the advice a_n . Namely, $C_n(x) := D_n(x, a_n)$. Hence, $L \in P_{/poly}$.

2 Karp-Lipton Theorem

Dick Karp and Dick Lipton showed that NP is unlikely to be contained in P_{poly} [KL80]. Since $P \subset P_{poly}$, if we could rule out the possibility that $NP \subseteq P_{poly}$, then we would have separated P and NP. Karp-Lipton theorem stirred a lot of effort trying to show circuit lower bounds. Indeed many successes followed, but unfortunately, we hit some barriers later on.

Theorem 2. If $NP \subseteq P_{\text{poly}}$, then $PH = \Sigma_2^p$.

Proof. As shown before, we just need to show that $\Pi_2^p \subseteq \Sigma_2^p$ to conclude $PH = \Sigma_2^p$. Let $L \in \Pi_2^p$. Then, there exists a poly-time TM M such that

$$x \in L \Leftrightarrow \forall y \exists z, M(x, y, z) = 1$$
, and y and z are poly-size.

All strings appear in this proof actually have polynomial length, and thus we use notations \exists^p and \forall^p to denote this. Due to the Cook-Levin theorem, the expression $\exists z, M(x, y, z) = 1$ can be converted in polynomial-time to a CNF formula φ such that

$$x \in L \Leftrightarrow \forall^p y, \ \varphi(x, y) \in \text{SAT.}$$
 (1)

To show $L \in \Sigma_2^p$, we need to somehow change the quantifier in (1).

Our assumption is that $NP \in P_{/poly}$, namely SAT has a polynomial-size circuit family $C = \{C_1, C_2, \cdots\}$.

For an input x, |x| = n, we give an Σ_2^p algorithm to decide whether $x \in L$. We first guess a circuit C for SAT. It may have two types of error: $\varphi \in$ SAT but $C(\varphi) = 0$ or $\varphi \notin$ SAT but $C(\varphi) = 1$. There is at least one correct guess, namely $C_{p(n)}$ where $p(n) = |\varphi(x, y)|$, that works correctly on $\varphi(x, y)$ by assumption.

For any such guess C, we construct a TM M' on input (C, φ) so that its error is "onesided". It relies on the fact that SAT is *self-reducible*. Namely given an oracle to the decision version, we can efficiently find a solution. M' takes C as a subroutine, and if C answers "Yes", then M' proceeds to find a satisfying assignment by repeatedly asking C. If there is any inconsistency from C (namely C says that a formula is satisfiable but both assignment of some variable x make it unsatisfiable), or the final assignment is not satisfying, then M' rejects. Otherwise M' accepts if C accepts. This machine M' never accepts a formula $\varphi \notin SAT$, but it may reject $\varphi \in SAT$ if C is an incorrect guess for SAT.

Now, we claim the following:

$$x \in L \Leftrightarrow \exists^p C \forall^p y, \ M'(C, \varphi(x, y)) = 1.$$
 (2)

Comparing to (1), we have changed the order of quantifiers, and the right hand side of (2) can be easily converted to a Σ_2^p expression (namely compute $\varphi(x, y)$ first). What we are left to do is to verify (2).

- If $x \in L$, then there is a correct guess $C_{p(n)}$ making the right hand side of (2) true.
- If $x \notin L$, then by (1), any y_0 will make $\varphi(x, y_0) \notin \text{SAT}$. Recall that M', whatever the guess C is, never accepts $\varphi \notin \text{SAT}$. Hence, the right hand side of (2) is false. \Box

Why doesn't the proof above work if we don't construct M' and simply use C?

Remark (Bibliographic). Karp and Lipton first proved a weaker result than Theorem 2, namely collapsing to the third level of PH. In their paper [KL80] they attribute this stronger version to Mike Sipser. The proof given here uses an idea first noted by John Hopcroft.

Relevant chapters are [AB09, Chapter 6.4] and [Pap94, Chapter 17].

3 Randomised computation

A great discovery in the theory of computation is the power of randomness. There are a lot of surprising randomised algorithms discovered since the 80s. Examples include, primality testing [Mil76, Rab80], polynomial identity testing [Zip79, Sch80], volume computation [DFK91], and many more.

To formalize the idea of randomised computation, we need the notion of a probabilistic Turing Machine (PTM).

A probabilistic Turing Machine is a TM with two transition functions δ_0 and δ_1 . At every step of an execution with input x, we apply δ_0 with probability 1/2, and δ_1 otherwise. For a PTM M, its output M(x) is now a random variable. We say M runs in time T(n) if for any input of length n, M halts within T(n) time regardless of the random choices made.

The standard class for efficient randomised computation is called BPP (bounded-error probabilistic polynomial-time).

Definition 2. A language L is in BPP if there exists a PTM P and a polynomial $p(\cdot)$, such that P runs in time p(n) and

- if $x \in L$, then $\Pr[P(x) = 1] \ge 3/4$;
- if $x \notin L$, then $\Pr[P(x) = 1] \le 1/4$.

In other words, the requirement is that $\Pr[P(x) = L(x)] \ge 3/4$. The constant 3/4 in Definition 2 is not essential, as long as it is strictly larger than 1/2. This is captured by a notion called "amplification". On the other hand, if it is 1/2, then the class defined would be (under standard assumptions) more powerful. That class is called PP, probabilistic polynomial-time. Historically PP is defined earlier than BPP, and as it turns out, PP is the *wrong* definition for efficient randomised computation.

We also have the "one-sided" error version of ${\tt BPP},$ called ${\tt RP}$ (randomised polynomial-time).

Definition 3. A language L is in RP if there exists a PTM P and a polynomial $p(\cdot)$, such that P runs in time p(n) and

- if $x \in L$, then $\Pr[P(x) = 1] \ge 3/4$;
- if $x \notin L$, then $\Pr[P(x) = 1] = 0$.

In other words, an RP algorithm never errs if $x \notin L$, but it may reject some $x \in L$.

Remark (Bibliographic). Relevant chapters are [AB09, Chapter 7.3, 7.4] and [Pap94, Chapter 11].

References

- [AB09] Sanjeev Arora and Boaz Barak. Computational Complexity A Modern Approach. Cambridge University Press, 2009.
- [DFK91] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm for approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991.
- [KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform complexity classes. In *STOC*, pages 302–309. ACM, 1980.
- [Mil76] Gary L. Miller. Riemann's hypothesis and tests for primality. J. Comput. Syst. Sci., 13(3):300–317, 1976.
- [Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
- [Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory, 12(1):128 138, 1980.
- [Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701–717, 1980.
- [Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In *EUROSAM*, volume 72 of *LNCS*, pages 216–226. Springer, 1979.