
INFR11102: Computational Complexity 24/10/2019

Lecture 12: Circuit models; Karp-Lipton Theorem
Lecturer: Heng Guo

1 Circuit models
So far we have been focusing on the standard (uniform) Turing machine as our model of
computation. Another arguably more natural and seemingly simpler model is Boolean cir-
cuits. Boolean circuits are also equivalent to TMs that “take advices”. We will define these
notions formally next.

A Boolean circuit C with n inputs is a directed acyclic graph (DAG), with n sources (no
incoming arcs) and one sink (no outgoing arcs). The n sources are the input bits and the
sink is the output. Every internal vertex is a “gate”, labelled with ¬, ∧, or ∨. The negation
gate ¬ has fan-in (number of incoming arcs) 1, and we will assume ∧ and ∨ have fan-in 2.1
The size of C, denoted |C|, is the number of vertices in C.

Notice that we actually do not restrict the fan-out (number of outgoing arcs). In contrast,
a Boolean formula is a circuit where all internal gates have fan-out 1. (A Boolean formula
is essentially a tree.) The advantage of larger fan-out is that we may reuse an intermediate
value more than once.

Given an input x = (x1, · · · , xn) ∈ {0, 1}n, the evaluation of C(x) goes in the straight-
forward way. Namely, we evaluate each gate according to the topological ordering of C
gradually, until the output is computed.

All Boolean functions f : {0, 1}n → {0, 1} can be computed by a circuit, simply by
transforming its truthtable into a CNF or DNF. The catch is that it may take exponential
size. A function as simple as parity: ⊕(x) :=

∑n
i=1 xi mod 2 requires exponential size CNF

or DNF.

Definition 1. Let T : N → N be a function. A T (n)-size circuit family C is a sequence
{Cn}n∈N of Boolean circuits, where Cn has n inputs, and |Cn| ≤ T (n) for every n.

A circuit family C defines its corresponding language:

L(C) := {x | Cn(x) = 1 if |x| = n }.

For a function T , the class Size[T] is defined as

Size[T] := {L | ∃ a T (n)-size circuit family C s.t. L = L(C)}.

We are most interested in polynomial sized circuit families.
1This restriction does not change the power of the circuit. Since we can easily replace a ∧ or ∨ with

fan-in k by k − 1 gates all with fan-in 2.

1

Definition 2. P/poly :=
∪

c∈N Size[n
c].

The circuit model is non-uniform in the sense that one can change the algorithm for
inputs of different sizes. TM can also distinguish amongst cases, but it can only deal with
finitely many cases. Circuits, on the other hand, can deal with infinitely many cases. There
are also uniform versions where we require that an algorithm exists to compute the circuits
for a given input length first. Nevertheless, the non-uniform version can be argued as efficient
computation (as in hardware chips handling inputs up to a certain size), and is indeed more
powerful than the standard polynomial time.
Theorem 1. P ⊂ P/poly.
Proof. The proof of this theorem is similar to that of the Cook-Levin theorem. Suppose M
is a TM with a polynomial-time bound P (n). Recall that we construct a P (n)-by-O(P (n))
computational table. Similar to the proof of the Cook-Levin theorem, we can write down
Boolean formulae to verify the following things: the first row is the initial configuration, the
last row is accepting, and the content of a row is computed according to its previous row.
Hence, the total size of the circuit is just O((P (n))2), which is still a polynomial.

On the other hand, all unary languages are in P/poly. A language L is called unary if
L ⊆ {1n | n ∈ N}. However, the following unary language is undecidable.

Name: Unary-Halting
Input: 1n

Output: Does n encode a pair ⟨M,x⟩ such that M halts on the input x?

As Unary-Halting ∈ P/poly, the class P/poly is far more powerful than P. It is actually
very hard to place P/poly amongst the complexity classes we have introduced so far. People
conjecture that NP ̸⊆ P/poly (which would imply P ̸= NP), but there is no promising route
towards proving it.

1.1 Circuit lower bounds
The attempt to separate NP from P/poly initiated the study of circuit lower bounds. It is
actually very easy to show that there exist hard functions. The difficulty is to find a hard
function within NP.
Theorem 2. For any n, there is a function f : {0, 1}n → {0, 1} that requires at least 2n

Cn

gates to compute for some constant C.
Proof. The proof is a simple counting argument. The total number of functions is 22

n . For
a circuit of size S, it can be described using C · S logS bits for some constant C. Hence the
total number of such circuits is at most 2C·S logS.

Let S = 2n

(C+1)n
. Then circuits of size S can compute at most

2C·S logS ≤ 2
C

C+1
· 2

n

n
·n < 22

n

.

Hence, there must be a function f that circuit up to size S cannot compute.

2

Remark (Bibliographic). Relevant chapters are [AB09, Chapter 6] and [Pap94, Chapter 17].

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

3

	Circuit models
	Circuit lower bounds

