1 Karp-Lipton Theorem

Dick Karp and Dick Lipton showed that \(\mathsf{NP} \) is unlikely to be contained in \(\mathsf{P/poly} \) [KL80]. Since \(\mathsf{P} \subset \mathsf{P/poly} \), if we could rule out the possibility that \(\mathsf{NP} \subset \mathsf{P/poly} \), then we would have separated \(\mathsf{P} \) and \(\mathsf{NP} \). Karp-Lipton theorem stirred a lot of effort trying to show circuit lower bounds. Indeed many successes followed, but unfortunately, we hit some barriers later on.

Theorem 1. If \(\mathsf{NP} \in \mathsf{P/poly} \), then \(\mathsf{PH} = \Sigma^P_2 \).

Proof. As shown in the last time, we just need to show that \(\Pi^P_2 \subset \Sigma^P_2 \) to conclude \(\mathsf{PH} = \Sigma^P_2 \). Let \(L \in \Pi^P_2 \). Then, there exists a poly-time TM \(M \) such that

\[
x \in L \iff \forall y \exists z, \ M(x, y, z) = 1, \text{ and } y \text{ and } z \text{ are poly-size}.
\]

All strings appear in this proof actually have polynomial length, and thus we omit this below. Due to the Cook-Levin theorem, the expression \(\exists z, M(x, y, z) = 1 \) can be converted in polynomial-time to a CNF formula \(\varphi \) such that

\[
x \in L \iff \forall y, \varphi(x, y) \in \mathsf{SAT}.
\]

(1)

To show \(L \in \Sigma^P_2 \), we need to somehow change the quantifier in (1).

Our assumption is that \(\mathsf{NP} \in \mathsf{P/poly} \), namely \(\mathsf{SAT} \) has a polynomial-size circuit family \(\mathcal{C} = \{C_1, C_2, \cdots\} \).

For an input \(x \), \(|x| = n \), we give an \(\Sigma^P_2 \) algorithm to decide whether \(x \in L \). We first guess a circuit \(C \) for \(\mathsf{SAT} \). It may have two types of error: \(\varphi \in \mathsf{SAT} \) but \(C(\varphi) = 0 \) or \(\varphi \notin \mathsf{SAT} \) but \(C(\varphi) = 1 \). There is at least one correct guess, namely \(C_{p(n)} \) where \(p(n) = |\varphi(x, y)| \), that works correctly on \(\varphi(x, y) \) by assumption.

For any such guess \(C \), we construct a TM \(M' \) on input \((C, \varphi) \) so that its error is “one-sided”. Recall that \(\mathsf{SAT} \) is self-reducible, namely given an oracle to the decision version, we can efficiently find a solution. \(M' \) takes \(C \) as a subroutine, and if \(C \) answers “Yes”, then \(M' \) proceeds to find a satisfying assignment by repeatedly asking \(C \). If there is any inconsistency from \(C \) (namely \(C \) says that a formula is satisfiable but both assignment of some variable \(x \) make it unsatisfiable), or the final assignment is not satisfying, then \(M' \) rejects. Otherwise \(M' \) accepts if \(C \) accepts. This machine \(M' \) will not accept a formula \(\varphi \notin \mathsf{SAT} \). It can only reject \(\varphi \in \mathsf{SAT} \) if \(C \) is an incorrect guess for \(\mathsf{SAT} \).

Now, we claim that the following:

\[
x \in L \iff \exists C \forall y, \ M'(C, \varphi(x, y)) = 1.
\]

(2)
Comparing to (1), we have changed the order of quantifiers, and the right hand side of (2) can be easily converted to a Σ^P_2 expression (namely compute $\varphi(x, y)$ first). What we are left to do is to verify (2).

- If $x \in L$, then there is a correct guess $C_{p(n)}$ making the right hand side of (2) true.
- If $x \not\in L$, then by (1), there is y_0 such that $\varphi(x, y_0) \not\in \text{SAT}$. Recall that M', whatever the guess C is, never accepts $\varphi \not\in \text{SAT}$. Hence, the right hand side of (2) is false.

Why doesn’t the proof above work if we don’t construct M' and simply use C?

2 Randomized computation

A great discovery in the theory of computation is the power of randomness. There are a lot of surprising randomized algorithms discovered since the 80s. Examples include, primality testing [Mil76, Rab80], polynomial identity testing [Zip79, Sch80], volume computation [DFK91], and many more. Here we showcase a simple randomized algorithm to test perfect matchings in a bipartite graph.

2.1 Lovász’s perfect matching algorithm

Let $G = (V, E)$ be a bipartite graph with two equal parts. Namely, $V = V_1 \cup V_2$ where V_1 and V_2 are disjoint, $|V_1| = |V_2|$, and $E \subseteq V_1 \times V_2$. A perfect matching (PM) is a subset $M \subseteq E$ of edges so that every vertex is adjacent to exactly one edge in M. Alternatively, a perfect matching M can be thought of as a permutation σ_M of $[n]$, so that $(i, \sigma_M(i)) \in E$.

Name: Bi-PM

Input: A bipartite graph G with two equal parts.

Output: Does G have a perfect matching?

Let $|V_1| = |V_2| = n$. Let A be the n-by-n bi-adjacency matrix of G. Rows of A are indexed by vertices in V_1, and columns by vertices in V_2. $A_{u,v} = 1$ if $(u, v) \in E$ and $A_{u,v} = 0$ otherwise. The determinant of A is defined as

$$
\det(A) = \sum_{\sigma \in S_n} (-1)^{\text{sgn}(\sigma)} \prod_{i=1}^{n} A_{i, \sigma(i)},
$$

where S_n is the symmetric group whose elements are permutations of $[n]$. Notice that if $\det(A) \neq 0$, then we know that there must be some non-zero term, and thus G has a perfect matching. However, if $\det(A) = 0$, then it might be because G has no perfect matching, or non-zero terms cancel. We need to figure out which is the case.

To get around this, we associate a variable $x_{u,v}$ to each edge (u, v). In other words, consider A_X, a n-by-n matrix, where $A_{u,v} = x_{u,v}$ if $(u, v) \in E$, and 0 otherwise. Then
\[\det(A_X) \text{ becomes a polynomial in variables } (x_{u,v})_{(u,v) \in E}. \text{ Notice that if } G \text{ has a perfect matching } M, \text{ then } \sigma_M \text{ induces a monomial in } \det(A_X), \text{ and } \det(A_X) \text{ is not identically zero. Otherwise if } G \text{ does not have a perfect matching, then } \det(A_X) \text{ is identically zero.} \]

Lovász’s algorithm [Lov79] is thus to simply test whether \(\det(A_X) \) is identically zero, by randomly assigning values to these variables. The algorithm works because of the following lemma, due to Zippel [Zip79] and Schwartz [Sch80].

Lemma 2. Let \(p(x_1, x_2, \ldots, x_n) \) be a non-zero polynomial of degree \(d \). Let \(S \) be a finite set of integers. Then, if \(a_1, \ldots, a_m \) are randomly chosen from \(S \) (with replacement), then

\[\Pr[p(a_1, \ldots, a_m) \neq 0] \geq 1 - \frac{d}{|S|}. \]

The proof of Lemma 2 can be found in [AB09, Lemma A.36].

The degree of \(\det(A_X) \) is at most \(n \). To apply Lemma 2 to Bi-PM, we just randomly assign values from \([4n]\) to \(x_{i,j} \), and then evaluate the determinant. (The determinant has exponentially many terms, but it can be evaluated efficiently using, say, Gaussian elimination.) Under this random assignment, by Lemma 2, \(\det(A_X) \neq 0 \) with probability at least \(1 - \frac{n}{4n} = 3/4 \) if \(G \) has a PM, and \(\det(A_X) = 0 \) with probability 1 if \(G \) does not have a PM. If we want to get better success probability, then we can simply run it again if \(\det(A_X) = 0 \). After \(t \) independent runs, the error probability goes down to \(4^{-t} \).

The advantage of this algorithm is that \(\det(\cdot) \) is not only efficiently computable, it can even be computed efficiently in parallel. It is contained in a complexity class called \(\text{NC} \), which captures efficient parallel computation. For more details, see [AB09, Chapter 6.7.1].

You might have noticed that the following quantity, called the *permanent* of the matrix,

\[\text{per}(A) := \sum_{\sigma \in S_n} \prod_{i=1}^{n} A_{i,\sigma(i)}, \]

does not have the annoying cancellation, and \(\text{per}(A) \) indeed counts the number of PM’s in \(G \). Unfortunately, \(\text{per}(A) \) is a quantity intractable to compute, and we will come back to that in counting complexity.

Remark (Bibliographic). In Theorem 1, Karp and Lipton [KL80] first proved collapse to the third level of \(\text{PH} \), and in their paper they attributes this stronger version to Mike Sipser. The proof given here uses an idea first noted by John Hopcroft. Relevant chapters are [AB09, Chapter 6.4, 7.1] and [Pap94, Chapter 11, 17].

References

