
INFR11102: Computational Complexity 22/10/2019

Lecture 11: Polynomial hierarchy
Lecturer: Heng Guo

1 Polynomial hierarchy
We could easily extend the definition of coNP further, leading towards the polynomial hier-
archy introduced by Meyer and Stockmeyer [MS72, Sto76].

Definition 1. The class Σp
k consists of all languages L such that there exists a polynomial-

time TM M and polynomials q1(·), · · · , qk(·) satisfying

x ∈ L ⇔ ∃y1∀y2 · · · (∃/∀)yk, |yi| ≤ qi(|x|) and M(x, y1, · · · , yk) = 1.

Similarly, The class Πp
k consists of all languages L such that there exists a polynomial-time

TM M and polynomials q1(·), · · · , qk(·) satisfying

x ∈ L ⇔ ∀y1∃y2 · · · (∃/∀)yk, |yi| ≤ qi(|x|) and M(x, y1, · · · , yk) = 1.

For any k ≥ 1, let ∆p
k := Σp

k ∩ Πp
k.

The polynomial hierarchy is defined as PH := ∪k∈NΣ
p
k.

Here we list a few basic properties of these classes.
It is easy to see that Σp

1 = NP and Πp
1 = coNP. More generally, Πp

k = {L | L ∈ Σp
k} for all

k.
It is commonly believed that PH has infinite levels, namely that it does not collapse to

some fixed level. The next theorem is a sufficient condition for it to collapse.

Theorem 1. If Σp
k = Πp

k for some k, then PH = Σp
k = Πp

k.

To show Theorem 1, we need a simple lemma.

Lemma 2. For any integer k ≥ 0,

(Σp
k ∪ Πp

k) ⊆ (Σp
k+1 ∩ Πp

k+1).

The proof of Lemma 2 is straightforward from Definition 1.

Proof of Theorem 1. First notice that if Σp
k ⊆ Πp

k or Πp
k ⊆ Σp

k, then they must be equal. If,
say Σp

k ⊆ Πp
k and L ∈ Πp

k, then its complement L is in Σp
k. It impies that L ∈ Πp

k. Hence
L = L ∈ Σp

k.

1

Given this, we only need to show that Σp
k+1 ⊆ Σp

k, since by Lemma 2, it implies that
Σp

k+1 ⊆ Πp
k+1 and therefore Πp

k+1 = Σp
k+1 = Σp

k = Πp
k. The theorem holds by induction

(whose validity will become clear later) from there .
We will show that if Σp

1 = Πp
1, then Σp

2 ⊆ Σp
1. The proof easily generalizes to other k

(and hence induction works). For L ∈ Σp
2, there exist polynomials q1 and q2 and a poly-time

TM M such that

x ∈ L ⇔ ∃y1∀y2 s.t. |yi| ≤ qi(|x|) and M(x, y1, y2) = 1

⇔ ∃y1 s.t. ⟨x, y1⟩ ∈ L′, (1)

where L′ is defined as follows

⟨x, y1⟩ ∈ L′ ⇔ ∀y2 s.t. |y2| ≤ q2(|x|) and M(x, y1, y2) = 1.

It is clear that L′ ∈ Πp
1 = Σp

1. Hence, there is a polynomial q′2 and a TM M ′ such that

⟨x, y1⟩ ∈ L′ ⇔ ∃y2 s.t. |y2| ≤ q′2(|x|) and M ′(⟨x, y1⟩, y2) = 1.

Now, going back to (1), we can rewrite L in Σp
1 form:

x ∈ L ⇔ ∃y1∃y2 s.t. |y1| ≤ q1(|x|), |y2| ≤ q′2(|x|) and M ′′(x, y1, y2) = 1,

where the machine M ′′ mimics M ′ except that it decouples ⟨x, y1⟩.

Last time we talked about the graph isomorphism problem GI. In fact, we will show
(toward the end of the course) that if GI is NP-complete, then Σp

2 = Πp
2 and the hierarchy

collapses. This is an evidence against GI being NP-complete.
Complete languages for Σp

k and Πp
k are similar to Sat except that we need to change the

quantifier accordingly. We define the following problem of the validity of quantified Boolean
formulae (QBF).

Name: QBFk

Input: A Boolean formula ∃X1, ∀X2, · · · , (∃/∀)Xk φ(X1, · · · , Xk) where φ is quantifier-free.
Output: Is the formula valid?

The following is a straightforward generalization of Cook-Levin theorem.

Theorem 3. QBFk is Σp
k-complete (under Karp’s reduction).

Remark (Bibliographic). The name of polynomial hierarchy comes from its similarity of the
arithmetical hierarchy in mathematical logic. Relevant chapters are [AB09, Chapter 5] and
[Pap94, Chapter 17].

2 TQBF and PSpace

Along the same vein of QBFk, we define the following problem of the validity of totally
quantified Boolean formulae (TQBF).

2

Name: TQBF
Input: An integer k and a Boolean formula ∃X1,∀X2, · · · , (∃/∀)Xk φ(X1, · · · , Xk) where

φ is quantifier-free.
Output: Is the formula valid?

The difference between TQBF and QBFk are that there is no fixed level of quantifier
alternations in TQBF. The integer k is an input in TQBF.
Theorem 4. TQBF is PSpace-complete.
Proof. One direction is easy, namely TQBF ∈ PSpace. Once again, to achieve a space-
efficient algorithm, we use recursion. If the leading quantifier is ∃x, then we recursively
check the two cases of setting x to 0 and 1, and return true if one of them is true. Similarly,
if the leading quantifier is ∀x, then we recursively check the two cases of setting x to 0 and
1, and return true if both of them are true. At any point of the recursion, we will only need
polynomial space. The recursion depth is at most n, and therefore this is a polynomial space
algorithm.

For the other direction, let M be a TM with space bound s(n) and x be an input. Recall
that M accepts x if and only if there is an accepting path from q0 to qacc in the configuration
graph GM,x, whose number of vertices is 2cs(n) for some constant c. Next we express this
property by a TQBF φ.

The basic idea is the same as Savitch’s theorem. To encode that q1 can reach q2 in
2ℓ steps, denoted q1 →2ℓ q2, we go through all possible middle points q′. Namely we ask
whether ∃q′(q1 →2ℓ−1 q′) ∧ (q′ →2ℓ−1 q2). Now, notice that if we recursively expand the
→ inside, we would end up with an exponential size formula. The trick, is to rewrite
(q1 →2ℓ−1 q′) ∧ (q′ →2ℓ−1 q2) as

∀x, y ((x = q1 and y = q′) ∨ (x = q′ and y = q2)) ⇒ (x →2ℓ−1 y).

Basically, we trade one → with a ∀ quantifier and a couple of new variables. Now, we may
recursively expand → inside the expression.

We apply this construction to q0 →2cs(n) qacc. The depth of this procedure is log 2cs(n) =
cs(n). Thus we end up with a TQBF whose length is O(s(n)). This TQBF is valid if and
only if there is an accepting path in GM,x, and the final formula has polynomial size and is
computed in polynomial time.

Clearly QBFk is a special case of TQBF for any k. Hence, PH ⊆ PSpace by Theorem 3,
Lemma 2, and Theorem 4.

TQBF captures many problems in game theory. Think of odd quantifiers (all are ∃) as
the strategy of player one, and even quantifiers (all are ∀) as the counter-strategy of player
two, and the Boolean formula encodes the claim that “player one wins”. Then the validity of
such a formula asks the existence of a winning strategy of player one. Asymptotic versions
of many natural games, like Chess and Go, are indeed PSpace-complete.
Remark (Bibliographic). The name of polynomial hierarchy comes from its similarity of the
arithmetical hierarchy in mathematical logic. Relevant chapters are [AB09, Chapter 4.2] and
[Pap94, Chapter 19].

3

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[MS72] Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In SWAT (now known as
FOCS), pages 125–129. IEEE Computer Society, 1972.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–
22, 1976.

4

	Polynomial hierarchy
	TQBF and PSpace

