
INFR11102: Computational Complexity 17/10/2019

Lecture 10: NP-intermediate candidates
Lecturer: Heng Guo

1 The class coNP

Recall that by L we denote the complement language of L, namely x ∈ L if and only if
x ̸∈ L. Define

coNP := {L | L ∈ NP}. (1)

Recall the verification definition of NP. The class coNP then is the class of problems whose
“NO” instances have succinct certificates.

Similar to NP, there is an alternative definition of coNP to (1).

Definition 1. A language L is in coNP if there is a polynomial p(·) and a polynomial-time
TM M such that

x ∈ L ⇔ ∀y, |y| ≤ p(|x|), M(x, y) = 1.

Recall that in the alternative definition of NP, a certificate y is required to exist so that
(x, y) is accepted by the verifier M . Instead, in Definition 1, we require that all certificates
are accepted.

Similar to the NP-completeness of Sat, the most commonly used complete language (with
respect to Karp reductions) of coNP is “tautology”:

Name: Taut
Input: A CNF formula φ.
Output: Is φ always true?

Essentially, coNP is characterised by the universal quantifier. For example, a “YES”
instance of Taut is a formula φ such that for all assignments σ of the variables, φ evaluated
under σ is always true.

Another popular conjecture is that NP ̸= coNP, but again, this is still an open problem.

2 NP-intermediate problems
Due to Ladner’s theorem, there is an infinite hierarchy of problems of increasing complexity
between P and NP-complete, if P ̸= NP. However, no natural intermediate problem is found
yet. A couple of potential candidates are Factoring and GI (graph isomorphisms).

1

2.1 PRIMES is in NP ∩ coNP

Before talking about Factoring, we will start with primality testing.

Name: PRIMES
Input: A natural number n in binary.
Output: Is n a prime number?

The naive algorithm to solve PRIMES is to enumerate all possible prime factors, from
1 to at most

√
n. The problem with this approach is that the length of n in binary is only

log n. Thus doing
√
n operations is exponential in terms of the input size.

It is rather clear that PRIMES ∈ coNP. The reason is that, if n is not a prime number,
then there must be a prime p such that 1 < p < n and p | n. This is a polynomial-size
certificate for “NO” instances of PRIMES.

What is perhaps surprising is that PRIMES is also in NP. This was proved by Vaughan
Pratt in 1975 [Pra75].

Theorem 1 (Pratt’s theorem). PRIMES ∈ NP ∩ coNP.

A well-known theorem in elementary number theory is Fermat’s little theorem.

Theorem 2 (Fermat’s little theorem). If p is a prime, then for any integer a, ap ≡ a mod p.
In particular, if p ∤ a, ap−1 ≡ 1 mod p.

Fermat’s little theorem in fact has a converse, known as Lehmer’s theorem [Leh27].

Theorem 3 (Lehmer’s theorem). Let n be an integer. If there is an integer a such that

1. an−1 ≡ 1 mod n, and

2. For every prime factor q of n− 1, it is not the case that a(n−1)/q ≡ 1 mod n,

then n is a prime.

Theorem 3 is a simple fact about cyclic groups.
If n is a prime, then such an a always exists. In fact, any 1 < a < n works. Clearly a < n

is a succinct certificate. Does this show Theorem 1?
Not yet! The problem is that once we have guessed a, it is easy to check Condition 1

in Theorem 3. However we still need to check Condition 2 in Theorem 3. (For example,
(n − 1)n−1 ≡ 1 mod n always holds if n is odd.) To do this, we need to know a prime
factorisation of n − 1. We can then guess a factorisation of n − 1, but how do we make
sure all factors are prime? We recurse. Namely, we will guess a along with a factorisation
p1p2 · · · pk = n − 1 (not necessarily distinct primes), and then guess certificates for the
primality of p1, p2, · · · , pk recursively.

The key question is how large will this certificate get?
We claim that there are at most 4 log2 n− 4 numbers encountered in this recursion. This

holds for the base case of n = 3. For n > 3, let
∏k

i=1 pi = n− 1 where p1, p2, · · · , pk are (not

2

necessarily distinct) primes and k ≥ 2. Then for n, by the induction hypothesis, the total
amount of numbers encountered in the recursion is at most

1 +
k∑

i=1

(4 log2 pi − 4) = 1− 4k + 4 log2

k∏
i=1

pi

= 1− 4k + 4 log2(n− 1)

≤ 4 log2 n− 4,

since k ≥ 2 and
∏k

i=1 pi = n − 1. Clearly all these numbers are at most n, and thus use at
most log2 n bits. The total size of the certificate is O((log2 n)

2).
A consequence of Theorem 1 is that, if PRIMES is NP-complete, then NP = coNP, which

contradicts to many people’s beliefs. The possibility that PRIMES is NP-complete was further
reduced, when efficient randomised primality testing algorithms are found by Gary Miller
[Mil76] and Michael Rabin [Rab80]. Note that we do not know a randomised polynomial-time
algorithm for Sat. We will cover randomised computation later on. The next surprising fact
is that, in fact, PRIMES is in P! This was shown by Agrawal, Kayal and Saxena [AKS04]
through a complicated derandomisation technique.

2.2 Factoring
A related problem, that is still not known to be in P or not, is Factoring.

Name: Factoring
Input: An integer n in binary.
Output: A prime factorisation of n.

Apparently if we formalise it this way, then it is not a decision problem. Nonetheless,
this problem has very important applications in cryptography, since a polynomial-time algo-
rithm for Factoring would crack the RSA public-key system. Although a polynomial-time
(deterministic or randomised) algorithm is not known, an efficient quantum one is! This is
the famous Shor’s algorithm [Sho97].

On the other hand, it would be very surprising if Factoring is NP-hard. This is because
its decision version is in NP ∩ coNP.

Name: Factor
Input: Integers n and k in binary.
Output: Does n have a prime factor that is at most k?

Clearly Factor ∈ NP since a prime p ≤ k such that p | n is a succinct certificate. On the
other hand, since we know PRIMES is in P, we can verify a prime factorisation of n. The
prime factorisation is thus a certificate that n does not have a prime factor that is at most
k. Thus, Factor ∈ NP ∩ coNP.

Therefore, if Factoring or Factor was NP-hard, then NP = coNP, which is a surprising
consequence.

3

2.3 Graph Isomorphisms
Another candidate intermediate problem is graph isomorphism (GI). This is a classical com-
putational problem, and its complexity is yet unsettled.

Name: GI
Input: Two graphs G1 and G2.
Output: Are G1 and G2 isomorphic?

At first glance, GI may look not that difficult (is it?). Essentially, the only trouble is
that the vertices may come in different orderings in G1 and G2, and “all” we need to figure
out is whether there is a reordering or not to make them identical. However, after decades
of research, there is no known polynomial-time algorithm yet.

It is straightforward that GI ∈ NP. The certificate is simply a permutation of all vertices
so that G1 and G2 are identical. However, there is no clear way to show that GI ∈ coNP.
Thus we do not know the kind of evidence such that Factor is not NP-hard. In fact, we do
have evidence that GI is not likely to be NP-hard. To talk about this evidence, we will need
to go beyond NP, to the so-called “polynomial hierarchy”.

References
[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Ann. of

Math. (2), 160(2):781–793, 2004.

[Leh27] Derrick H. Lehmer. Tests for primality by the converse of Fermat’s theorem. Bull.
Amer. Math. Soc., 33(3):327–340, 05 1927.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Syst.
Sci., 13(3):300–317, 1976.

[Pra75] Vaughan R. Pratt. Every prime has a succinct certificate. SIAM J. Comput.,
4(3):214–220, 1975.

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory,
12(1):128 – 138, 1980.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

4

	The class coNP
	NP-intermediate problems
	PRIMES is in NP and coNP
	Factoring
	Graph Isomorphisms

