
1 More on NP

In this set of lecture notes, we examine the class NP in more detail. We give
a characterization of NP which justifies the “guess and verify” paradigm, and
study the complexity of solving search problems such as that of finding a satis-
fying assignment for a formula.

Intuitively, NP is the class of languages which have short efficiently verifi-
able witnesses or proofs of membership. Here “efficiently verifiable” refers to
verifiability in polynomial time. We now formalize this intuition.

Theorem 1 For any language L ⊆ {0, 1}∗, L ∈ NP iff there is a polynomial-
time computable binary relation R and a polynomial p such that for any string
x ∈ {0, 1}∗, x ∈ L is equivalent to the existence of a string y ∈ {0, 1}∗, |y| 6
p(|x|), such that R(x, y) holds.

Proof. We show both directions. Assume L ∈ NP. Let M be a non-
deterministic TM deciding L in time at most p(n), where p is a polynomial.
We show how to define a polynomial-time computable relation R satisfying the
conditions in the statement of the theorem. We interpret the second parameter
y for R will be as a computation of M , with R(x, y) holding iff y represents an
accepting computation of the machine on x. This check can clearly be done in
polynomial time. If x ∈ L, there is a string y of length O(p(n)) representing
an accepting computation of M on x, and hence R(x, y) holds. Conversely, if
x 6∈ L, there are no accepting computations of M on x, and hence R(x, y) does
not hold for any string y.

Next we show the converse. Assume that that there is a language L and
a polynomial-time computable relation R satisfying the conditions specified in
the statement of the theorem. We define an NTM M accepting L in polynomial
time. M guesses a string y of length at most p(|x|) and stores this string on one
of its tapes. It then simulates the polynomial-time machine for R on < x, y >
accepting iff the polynomial-time machine accepts. Both the “guessing” and
“verifying” phases take at most polynomial time, and M accepts an input x iff
there is a witness y of length at most p(|x|) such that R(x, y), which happens
iff x ∈ L. �

Thus far we have studied the complexity of decision problems. Often, search
problems are of just as much interest in practice. Rather than asking whether
a satisfying assignment to a formula φ exists, we could ask to find such an
assignment. Similarly, rather than asking if a clique of a certain size exists in a
graph, we could ask to find such a clique. Solution of the search problem implies
solution of the decision problem - finding a satisfying assignment implies that
such an assignment must exist, and similarly with finding a clique. What is
more interesting is that with regard to solvability in polynomial time, for most
natural NP-complete problems, the search problem is no harder than the decision
problem. The proof of this exploits the downward self-reducibility property of
many natural problems, which allows us to find a solution “bit-by-bit” assuming

1

an efficient procedure for the decision problem. We illustrate this phenomenon
for the Satisfiability problem.

Theorem 2 If SAT ∈ P, there is a polynomial-time procedure which, given any
satisfiable formula φ as input, outputs a satisfying assignment to φ.

Proof. Suppose there is a TM M running in polynomial time which decides
SAT . We describe a procedure SearchSAT which, given a formula φ as input,
runs in polynomial time and outputs a satisfying assignment to φ if one exists.
Suppose the variables of φ are x1, x2 . . . xn. SearchSAT maintains an array y of
truth values encoding the output assignment and a counter i. Initially, the array
values are all set to “null”, and i to 1. SearchSAT first runs M on φ and outputs
“Fail” if M rejects. In case M accepts, SearchSAT does the following repeatedly
while i 6 n. It obtains formula φ0 by substituting xi = 0 (i.e., false) into φ,
and formula φ1 by substituting xi = 1 (i.e., true) into φ. It runs M separately
on φ0 and φ1. Since M decides SAT , and since M accepts φ (else SearchSAT
would already have output “fail”), M must accept either φ0 or φ1 (or both).
If M accepts φ0, SearchSAT sets y[i] = 0, sets φ to φ0, increments i, and goes
back to the start of the loop. If M accepts φ1, SearchSAT sets y[i] = 1, sets φ
to φ1, increments i, and goes back to the start of the loop. When SearchSAT
finally leaves the loop, the array y contains a satisfying assignment to φ if one
exists.

Note that SearchSAT makes at most 2n+ 1 calls to M (in fact, this can be
reduced to n+ 1 since if M doesn’t accept on φ0, it must accept on φ1). A key
point is that each of these calls is on an input of length at most |φ|, since fixing
a variable of φ can only simplify φ. Apart from the calls to M , SearchSAT is
clearly polynomial-time. There are a linear number of calls, and each one is
answered in polynomial time, hence SearchSAT is polynomial-time overall. If
the input formula φ is satisfiable, each iteration of the loop produces one new
value of a satisfying assignment to φ, and hence after n iterations, the array y
contains a satisfying assignment. �

The “downward self-reducibility” property implicit in the above proof is
that the question of whether φ is satisfiable can be reduced to questions about
whether two smaller instances are satisfiabile, namely φ0 and φ1. This is what
enables us to build up a satisfying assignment using a decision procedure for
SAT .

The theory of NP-completeness provides strong evidence that NP 6= P. How-
ever, proving this is a notoriously difficult problem, and there has been little
progress in this regard. How about other complexity class separations such as
showing NEXP and EXP are different - are these hard as well? The padding tech-
nique can be used to draw connections between separations of different pairs of
complexity classes, as illustrated below.

Theorem 3 If NP = P, then NEXP = EXP.

Proof. Suppose NP = P. Consider an arbitrary language L ∈ NEXP. Let M

2

be an NTM deciding L in time at most O(2nk

) for some constant k > 0.We use
the assumption to show that L ∈ EXP.

The key idea is to define a “padded” version L′ of L as follows. A string y
belongs to L′ iff y is of the form x012|x|k−|x|−1, where x ∈ L.

First, we show that L′ ∈ NP. We define an NTM M ′ deciding L′ in polyno-
mial time as follows. M ′ first checks that its input y is of the form x012|x|k−|x|−1,
for some string x. If not, it rejects. This format check can be done determinis-
tically in linear time. If the input is of the right format, M ′ extracts x and runs
M on x, accepting iff M accepts. Clearly, M ′ decides L′. By the assumption
on the running time of M , M ′ accepts in time linear in its input length.

Now, by the assumption that NP = P, we have that L′ ∈ P. Thus there
is some TM N ′ deciding L′ in polynomial time. We show how to define a
TM N deciding L in exponential time. Given an input x, N forms the string
y = x012|x|k−|x|−1 and runs N ′ on y, accepting iff N ′ accepts. Forming the string
y can be done in time linear in the length of y, and hence in time exponential
in |x|. Since N ′ is a polynomial-time machine, running N ′ on y takes time
exponential in |x|. Thus the computation of N on x takes exponential time
overall, and N accepts x iff x ∈ L. This establishes that L ∈ EXP. �

2 NP-complete problems

In the previous lecture notes, we defined the notion of completeness for a com-
plexity class. A priori, it is not clear that complete problems even exist for
natural complexity classes such as NP or PSPACE. Fascinatingly, completeness
turns out to be a pervasive phenomenon - most natural problems in NP are
either in P or NP-complete. Garey and Johnson have written an entire book,
“Computers and Intractability: A Guide to the Theory of NP-completeness”,
which is essentially a compendium of NP-complete problems along with proofs
that completeness holds. Proving that a problem is NP-complete might not
seem to have direct relevance to solving that problem in practice. But in fact,
such proofs give us a lot of important information. They give evidence that
the problem is hard to solve, and motivate the exploration of more relaxed no-
tions of solvability, since polynomial-time solvability in the worst case would
imply the unlikely conclusion that NP = P. Also, they connect the complexity
of the problem to that of various other problems - any solution procedure for
the problem can be used to solve arbitrary problems in NP. Such connections
between problems are especially striking when the problems come from different
domains. It is notable that the range of problems that are NP-complete includes
problems from logic (eg., Satisfiability), graph theory (eg., Clique, Vertex Cover,
Colourability), optimization (Integer Linear Programming, Scheduling), num-
ber theory (Subset Sum) etc. For several sub-fields of computer science, such
as databases, architecture, artificial intelligence and machine learning, natural
computational problems in these fields turn out to be NP-complete. This is the
case even for problems from other fields, such as statistical physics, biology and

3

economics. It is quite extraordinary that the NP vs P problem is relevant to so
many different areas of science - this is a major reason why this is considered a
fundamental problem.

Ideally, we would like to show NP-completeness for natural problems, i.e.,
problems which are studied independently of their status in complexity the-
ory. However, it is already interesting to show that there exist problems which
are NP-complete. The most simple such proof demonstrates completeness of
a somewhat unnatural problem concerning halting of non-deterministic Turing
machines.

Definition 4 The Bounded Halting problem for non-deterministic Turing ma-
chines (BHNTM) is defined as follows. An instance < M,x, 1t > belongs to
BHNTM , where M is an encoding of an NTM, x is a binary string, and t is
a number, iff M accepts x within t steps.

In general, we will abuse notation by using M both to refer to a machine
and its encoding. It will be clear from the context which of these is meant.

Theorem 5 BHNTM is NP-complete.

Proof. First, we show that BHNTM belongs to NP. Here, we assume the
existence of an efficient universal non-deterministic Turing machine U which,
given the encoding of an NTM M and an input x, outputs M(x) in time which
is a fixed polynomial of the time taken by M on x. Such a machine can be
constructed in a similar way to deterministic efficient universal machines.

Given that U exists, the proof that BHNTM is in NP is easy. To solve
BHNTM , simply simulate U on < M,x > for p(t) steps, where p is a fixed
polynomial such that U takes time p(t) to simulate t steps of M on x. Accept if
U accepts and reject otherwise. Clearly, this defines a non-deterministic Turing
machine operating in polynomial time, since the machine halts within p(t) steps
for a fixed polynomial p, and the length of the input is at least t. The machine
accepts < M,x, 1t iff U accepts < M,x > in at most p(t) steps, which happens
iff M accepts x in at most t steps.

To prove that BHNTM is NP-hard, we need to define, for each L ∈ NP , a
polynomial-time computable function f such that for each x, x ∈ L iff f(x) ∈
BHNTM . Since L ∈ NP, there is some non-deterministic Turing machine M
which decides L within q(n) steps, where q is a polynomial. Now we define f
as follows: for each x, f(x) =< M,x, 1q(|x|). Clearly, x ∈ L iff M accepts x
within q(|x|) steps, which is the case iff f(x) ∈ BHNTM . We also need to
show that f is polynomial-time computable. It is easy to define a polynomial-
time transducer computing f , since the encoding of the machine M is fixed
independent of x, and the value q(|x|) can be easily be computed in unary in
polynomial time for a fixed polynomial q. All the transducer needs to do is
encode M , x and 1q(|x|) together into one string - such an encoding can also be
done easily in polynomial time. �

4

One of the fundamental theorems in complexity theory is that SAT , the
satisfiability problem for Boolean formulae in conjunctive normal form, is NP-
complete. This result was proved by Stephen Cook in 1971, and independently
by Leonid Levin. The advantage of this result over Theorem 5 is that SAT is a
natural problem. This completeness result opens up the possibility of showing
that several other natural problems in NP are also NP-complete by constructing
reductions from SAT .

Theorem 6 SAT is NP-complete.

Proof. To see that SAT ∈ NP, consider a non-deterministic machine which
guesses an assignment ~x to the input formula φ, and then verifies that ~x satisfies
φ. At most |φ| bits are guessed in the first phase, since a formula φ can have at
most |φ| variables. The verification phase can also be done in polynomial time,
since it simply involves evaluating a CNF formula on a given assignment. Thus
the machine can be implemented to work in polynomial time.

The much harder part of the proof is to show that SAT is NP-hard. Let
L ∈ NP be an arbitrary language, and let M be a non-deterministic Turing
machine accepting L in time at most p(n), where p is a polynomial. Given any
instance x of L with |x| = n, we show how to construct in polynomial time a
formula φx such that M accepts x iff φx is satisfiable.

Without loss of generality, we assume M = (Q,Σ,Γ, δ, q0, qf) is a 1-tape
Turing machine - this will make the reduction simpler. Note that the restriction
to 1-tape Turing machines does not affect the class NP, hence we are justified
in making this restriction. When we talk about 1-tape TMs here, we permit
symbols to be written on the tape, unlike in the case of general multi-tape TMs,
where the tape is read-only. We will also assume without loss of generality
that when the machine reaches an accepting configuration, it stays there. This
assumption allows us to restrict attention to computations of length exactly
p(n).

The central notion in the proof is that of a computation tableau. The compu-
tation tableau is a 2-dimensional table which represents the evolution of a com-
putation. The rows of the tableau correspond to time steps, and the columns
correspond to positions on the tape of the TM. The i’th row of the tableau
represents the configuration of the TM after the i’th time step. Configura-
tions of a 1-tape TM can be represented simply as strings over the alphabet
∆ = Q ∪ Γ ∪ {#}, where the # symbol functions as an end-marker. The string
#αqβ#, where α, β ∈ Γ∗ and q ∈ Q, represents the configuration where the
string α is written on the first |α| cells of the TM’s tape, the string β followed
by blanks on the rest of the tape, the finite control is in state q, and the tape
head is reading the |α+ 1|’th symbol on the input tape.

Let Ci be the string representing the configuration of the TM after i steps.
A matrix with p(n) + 1 rows and p(n) + 4 columns is a correct tableau for M on
x if the rows C0, C1 . . . Cp(n) represent a correct computation of M on x. The
question of whether M accepts on x now translates to the question of whether
there is a correct tableau of M on x such that Cp(n) represents an accepting
configuration.

5

We will construct a formula φx such that assignments to the variables of
φx correspond to tableaux, and an assignment satisfies φx iff the tableau cor-
responding to the assignment is a correct accepting tableau of M on x. The
formula φx is over variables Xi,j,k, where 0 6 i 6 p(n), 0 6 j 6 p(n) + 3, and
k ∈ ∆. Thus the number of variables is O(p(n)2). The intended interpretation
of the variable Xi,j,k being set to true is that the (i, j)’th cell of the tableau
contains the symbol k.

The clauses of the formula are constraints ensuring that the intended corre-
spondence between correct accepting tableaux and satisfying assignments to φx

holds. The CNF formula φx is the conjunction of four sub-formulas in CNF -
φinit, φaccept, φconfig and φcomp. φinit encodes the constraint that C0 represents
the initial configuration of M on x. φaccept encodes the constraint that Cp(n)

represents an accepting confgiruation of M on x. φconfig encodes the constraint
that each cell in the tableau holds exactly one symbol, i.e., for each i and j,
there is a unique k such that Xi,j,k is true. φcomp encodes the constraint that for
each i, 0 6 i 6 p(n)−1, the i+1’th row of the tableau represents a configuration
that can arise in one step from the configuration represented by the i’th row.

We need to describe more explicitly how to write the sub-formulas in CNF.
φinit is a CNF which specifies that the jth cell in the 0’th row of the tableau
contains xj , where xj is the j’th symbol of the input x, when 1 6 j 6 n, contains
the symbol # when j = 0 or j = p(n) + 3, and contains the blank symbol for all
other j. This condition can be written as a single conjunction of literals. φfinal

is simply a disjunction of Xp(n),j,qf
over all 0 6 j 6 p(n) + 3, which is clearly a

CNF (with one clause!).
φconfig encodes the condition that for each i and j, at least one Xi,j,k is

true, and also at most one Xi,j,k is true. For a given i and j, this condition can
be written as a CNF where the first clause is a disjunction over all k ∈ ∆ of
Xi,j,k, and there are

(
k
2

)
other clauses which say that for each pair of distinct

k1, k2 ∈ ∆, either Xi,j,k1 is false or Xi,j,k2 is false. φconfig is the conjunction
over all i and j of the CNFs expressing the condition that the (i, j)’th cell of
the tableau contains a unique symbol.

The most important sub-formula is φcomp, which is the only part of φx which
actually depends on the transition relation of the NTM M . The crucial idea
when defining φcomp is the locality of computation. During one step of a Turing
machine computation, the configuration can only change by a bounded amount
- the current tape symbol and state can change, and the tape head position
can change by at most one. This is crucial to encoding the “compatibility” of
consecutive rows Ci and Ci+1 of a tableau in CNF. More precisely, we will look
at fixed 2 × 3 “windows” of the tableau. The window corresponding to a cell
(i, j) is the set of 6 cells (i − 1, j − 1), (i − 1, j), (i − 1, j + 1), (i, j − 1), (i, j)
and (i, j + 1). Assuming that φinit is satisfied, whether a tableau is correct in
the sense that it encodes a correct computation of the NTM M on x reduces
to the question of whether all (i, j)-windows are valid in the sense that they
occur as part of some computation of M . Clearly, if a tableau is correct, all
(i, j)-windows will be valid. To see the other direction, assume the tableau is
incorrect (in that it does not correspond to any computation of M), and let i

6

be the first row and j the first column in that row such that the first i− 1 rows
of the tableau together with the cells up to column j in the i’th row are not
consistent with any correct tableau. Since φinit is satisfied, we have that i > 1.
Then, by the locality of computation, the (i, j − 1)-window will be invalid.

Now the key observation is that checking whether a window is valid can be
done using a CNF of constant size. This is because the question of whether a
window is valid depends on a constant number of variables - there are a constant
number of cells in a window, and each one of these has a constant number of
variables of φx associated with it. Now any Boolean function on a constant
number of variables has a CNF of constant size. This follows from the fact that
any Boolean function on t variables has a CNF of size at most t2t. Let Ci,j be
the CNF checking that the (i, j)-window is valid. φcomp is the conjunction of
Ci,j for all 1 6 i 6 p(n) + 1, 1 6 j 6 p(n) + 2. Clearly, the size of φcomp is
O(p(n)2).

The size of φx is polynomial in |x| since both φinit and φaccept are of size
O(p(n)), and φconfig and φcomp are of size O(p(n)2). Moreover, φx can be gener-
ated from x in polynomial time. To see this, we consider in turn the complexity
of generating the sub-formulae φinit, φaccept, φconfig, φcomp. The formulae φinit,
φaccept and φconfig all have a very simple form and it is easy to see that they
can be generated efficiently. As for φcomp, the constant size formula Ci,j for any
fixed i and j can be generated in constant time, and hence the conjunction of
these formulae can be generated in time O(p(n)2).

We need to argue that M accepts x iff φx is satisfiable. If M accepts x,
there is a correct accepting tableau of M on x, and by setting Xi,j,k to be
true iff the (i, j)’th cell of this tableau contains the symbol k, we derive a
satisfying assignment to φx. Conversely, if φx is satisfiable, so is φconfig, and
so there is some fixed tableau corresponding to any given satisfying assignment.
The satisfiability of φinit ensures that the first row of this tableau is correct.
The satisfiability of φcomp ensures that all remaining rows are correct. The
satisfiability of φaccept ensures that the final row is accepting, and hence that
the tableau is a correct accepting tableau of M on x, which implies M accepts
on x.

�

3 Reductions from SAT

Theorem 6 facilitates showing that several other natural problems in NP are
NP-complete, since SAT is a natural problem from which to reduce. We give
two simple examples here - the 3−SAT problem, which is a restriction of SAT ,
and the Integer Linear Programming problem, which is a natural optimization
problem. In the Computability and Intractability course (which is a 3rd year
course), several other examples of this kind are discussed.

The 3− SAT problem is the satisfiability problem for 3-CNF formulas, i.e.,
CNF formulas where every clause has at most 3 literals.

7

Theorem 7 3− SAT is NP-complete.

Proof. 3− SAT is clearly in NP, since an assignment to a 3-CNF formula can
be guessed and verified in polynomial time.

We define a polynomial-time reduction from SAT to 3− SAT . Let φ be an
instance of the SAT problem with clauses C1 . . . Cm. We show how to define a
3-CNF formula φ′ such that φ′ is satisfiable iff φ is satisfiable.

The reduction works clause by clause - for each clause Ci in φ, we define
a 3-CNF formula φi over a larger variable set such that the an assignment
satisfies Ci iff there is an extension of it (i.e., the assignment together with
assignments to variables in φi but not in Ci) which satisfies φi. Assume wlog
that Ci = y1 ∨ y2 ∨ . . . yr, where each yi is a literal. φi is defined over the
variables mentioned in Ci together with r − 2 new variables z1 . . . z2 . . . zr−2.
These new variables are chosen afresh for each i.

The formula φi is defined as (y1∨y2∨z1)∧(NOT (z1)∨y3∨z2) . . . (NOT (zr−2)∨
yr). Now notice that for Ci to be satisfied, at least one of the yj must be true.
Say ys is true. Then by setting zj to be true for j 6 s−2 and false for j > s−2,
φi is satisfied as well. Conversely, if φi is satisfied, then it can’t be the case that
all the yj are false, since the restriction of φi obtained by setting all yj to false
is z1 ∧ (NOT (z1) ∨ z2) ∧ . . . (NOT (zr−2)) which is unsatisfiable.

Now, we define φ′ to be the conjunction over all i of φi. If φ is satisfiable,
there is an extension of the satsifying assignment of φ which satisfies φ′, by the
argument in the previous para. Conversely, if there is a satisfying assignment
to φ′, then the projection of that satisfying assignment to the variables of φ
satisfies φ. It is easy to see that φ′ can be constructed in polynomial time from
φ, and clearly φ′ is a 3-CNF. �

An input to the Integer Linear Programming (ILP) problem is a set of
inequalities with rational co-efficients. The question is whether there is an
integer assignment to the variables which satisfies all the constraints. Unlike
with most NP-complete problems, it is not that easy to see that ILP ∈ NP, since
a witness need not necessarily have polynomial size. This is the case though,
but the reasons are beyond the scope of the course.

We focus on showing NP-hardness.

Theorem 8 ILP is NP-hard.

Proof.
Given a CNF formula φ with clauses C1 . . . Cm, we show how to construct a

set of inequalities with rational co-efficients which is sastifiable by integer assign-
ments to the variables iff φ has a satisfying assignment. Again, the reduction
works clause by clause.

Consider any specific clause Ci and assume wlog that Ci = y1 ∨ y2 . . . yr,
where each yi is a literal. For each j, let xj be the variable corresponding
to the literal yj and let zj be a Boolean value which is 1 if yj = xj and 0 if
yj = NOT (xj). We create an inequality corresponding to the clause Ci. The
variable set over which the ILP instance is defined is the same as the variable

8

set of φ, and we will assume that the names of the variables are the same as
well. The inequality corresponding to Ci simply states that the sum over all
j, 1 6 j 6 r of (2zj−1)xj +(1−zj) is at least 1. Note that (2zj−1)xj +(1−zj)
is (1− xj) when yj = NOT (xj) and xj when yj = xj .

We also add “variable constraints”: inequalities for each xj stating that
0 6 xj 6 1.

Now, if there is a satisfying assignment to φ, then interpreting a true assign-
ment to a variable as 1 and a false assignment as 0 satisfies the ILP instance.
Conversely, if there is an integer assignment to the ILP instance which sastifies
all constraints, then each variable is either zero or one in the assignment, by the
variable constraints. Now, we can interpret a variable assignment to the ILP as
a truth assignment to the variables of φ in the natural way, and the satisfaction
of the i’th constraint in the ILP instance ensures that Ci is satisfied, since at
least one yi has to be true.

Again, it’s clear that the ILP instance can be constructed in polynomial
time from φ. �

9

