
1 Fundamental Classes

In the previous lectures, we defined the notions of time, space and non-determinism
abstractly. Here we focus on certain complexity classes of interest defined by
imposing specific bounds on resources.

Definition 1 1. LOG ≡ DSPACE(log(n))

2. NLOG ≡ NSPACE(log(n))

3. P ≡ DTIME(poly(n)) ≡ ∪
k>0

DTIME(nk)

4. NP ≡ NTIME(poly(n))

5. PSPACE ≡ DSPACE(poly(n))

6. EXP ≡ ∪
k>0

DTIME(2n
k

)

7. NEXP ≡ ∪
k>0

NTIME(2n
k

)

Note that by Savitch’s theorem, non-deterministic polynomial space is the
same class as deterministic polynomial space.

Using the general relationships between resources shown in the previous
lecture notes, we have the following chain of inclusions:
LOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP.

Some of the central open questions in complexity theory concern whether
these inclusions are strict or not. Note that by the space hierarchy theorem
LOG ⊂ PSPACE, therefore at least one of the first four inclusions is strict,
however we do not know which one! In fact, using Savitch’s theorem and the
space hierarchy, we know that one of the inclusions (2)-(4) is strict, but we do
not know which one. Similarly, using the time hierarchy theorem, we know that
one of the inclusions (3)-(5) is strict, however we do not know which one.

The main question we will be focusing on in this part of the lecture notes is
the NP vs P question, which asks if P is a strict subclass of NP. The class P is
especially interesting to us because it is a model of feasible computation. There
are many problems of great practical relevance which are known to be in NP

but are not known to be in P - this is one of the main reasons for the interest
in the NP vs P question.

Why do we use the class P as a model of feasible computation? There are
many different reasons for this. For one, if a decision problem is in P, that
often indicates that it is solvable in practice for a large range of input sizes
of interest. For example, suppose there were a problem solvable in n2 steps
on inputs of length n. Then, if we have a processor which is able to perform
1012 steps per second, which is a fair approximation to current technology, this
processor can be used to solve our problem for input sizes up to 106 within a
second. However, if a problem requires 2n steps on inputs of length n, then the
processor could only be used to solve the problem for input sizes up to 40 in a

1

second. This difference in input sizes is significant, and reglects the disparity
between polynomial and exponential growth.

It is possible that a problem is in polynomial time with a large exponent,
say it is solvable in n100 steps. This would not seem to suffice for the problem
to be feasible in practice. However, we often find that problems solvable in
polynomial time are solvable with small exponents, which is a strong indication
of practical feasibility.

A second reason for being interested in P is that it is very robust under the
choice of machine model. The class P remains the same irrespective of whether
our underlying machine model is a multi-tape Turing machine, a single-tape
Turing machine, a multi-dimensional Turing machine, a random access machine,
a register machine etc. This is of course not a theorem since we do not have
a formal definition of “machine model” - however it is a thesis analogous to
the Church-Turing thesis. It turns out that for pretty much every “reasonable”
model of computation defined so far, the model can be simulated in polynomial
time by a Turing machine, and conversely. The one possible exception to this
is the quantum Turing machine model - however, since quantum computation
has not yet been demonstrated in the real world for significant input sizes, it is
unclear whether this is a reasonable model.

A third reason which facilitates the mathematical treatment of the class is its
closure under a wide variety of natural operations, such as union, intersection,
complement, subroutines etc. To illustrate, one could alternatively attempt to
capture the notion of “feasibly computable” by DTIME(n), but in addition to not
being robust under the choice of machine model, this class is not closed under
sub-routines. By this, we mean that if a linear-time machine makes a linear
number of calls to other linear-time computations, the overall computation is not
in linear time (rather, it is in quadratic time). On the other hand, by the closure
properties of polynomials,if a polynomial-time procedure makes a polynomial
number of calls to polynomial-time procecures, the overall computation is still
polynomial-time.

There are many examples of natural problems - decision or function problems
- computable in polynomial time. Examples are addition, multiplication and di-
vision of integers, sorting, finding a shortest path or minimum spanning tree in
a graph and the question of whether a graph has a perfect matching. There
are some problems with highly non-trivial polynomial-time solutions, eg. the
Primality problem which asks if the input number is prime, and the Linear Pro-
gramming problem, where we ask how to optimize a given linear function subject
to given linear constraints. Primality was only shown to be in polynomial time
a few years ago by Agrawal, Kayal and Saxena, while Linear Programming was
shown to be in polynomial time by Khachiyan, with a more efficient algorithm
due to Karmarkar.

There are however many other natural problems such as the satisfiability
problem for Boolean formulae, the problem of finding a clique of a given size in
a graph and the problem of factoring a number into its prime factors which are
of great practical importance but are not known to be solvable in polynomial
time. The class NP comes in useful in terms of relating these problems to

2

one another and understanding their complexity. The Satisfiability and Clique
problems are both in NP. The factoring problem as we have defined it is not a
decision problem, but we can define a corresponding decision version which also
turns out to be in NP.

In general, the class NP contains problems for which verifying whether a
given solution is correct is easy. Contrast this with the class P, which contains
problems for which finding solutions is easy. This distinction between finding
and verifying is the essence of the NP vs P problem.

The NP vs P problem is not just central to computer science, but to math-
ematics as well. This is because it is intimately related to the concept of math-
ematical proof. Say there is a mathematical theorem T we would like to prove.
Intuitively it is easy to check whether a purported proof of T is correct, but
hard to generate such a proof. This corresponds to the difference between NP

and P - verifying a proof is easy, but generating one is hard. In recognition of
the fundamental importance of the NP vs P problem, the Clay Mathematical
Institute has designated it as one of the seven Millennium Problems, with a
prize of 1 million dollars for its solution.

2 Reductions, Hardness and Completeness

Intuitively, NP is a more powerful class than P because non-deterministic ma-
chines have the ability to explore an exponential-size search space. Justifying
this intuition with a mathematical proof is notoriously hard, however. Despite
strenuous efforts, limited progress has been made on resolving the NP vs P prob-
lem. Even if we don’t have a mathematical proof that NP is not equal to P, we
would still like to be able to say something inteesting about the “hardness” or
otherwise of problems in NP, given that so many natural problems belong to
NP. The notion of a reduction allows us to do this.

Reductions are used as a tool to study the relative complexities of problems,
rather than their absolute complexity. A reduction from a problem L1 to a
problem L2 means that L1 is an “easier” problem than L2, since a solution to
L2 would also imply a solution to L1.

We now define reductions formally. You might have studied reductions in
the context of computability theory, where a reduction is a computable function
mapping one problem to another. In the context of complexity theory, we also
need to bound the resources used by the reduction procedure. This can be done
in different ways, and correspondingly we get different notions of reduction.
The ones we are most interested in are polynomial-time reductions and log-space
reductions.

We first need the notion of a Turing machine transducer, which computes
functions rather than solving decision problems.

Definition 2 A Turing machine transducer is a Turing machine with a desig-
nated read-only input tape and a designated write-only output tape. A Turing
machine trandsucer M computes a function f : Σ∗ → Γ∗, where Σ is the input

3

alphabet of M and Γ its tape alphabet, if for each input x, M halts with f(x)
written on its output tape.

The time and space used by a Turing machine transducer are defined simi-
larly to the time and space used by a Turing machine, with the input and output
tapes not taken into account when measuring resources consumed.

Definition 3 Let Σ be a finite alphabet. A language L1 ⊆ Σ∗ is said to be poly-
time reducible to a language L2 if there is a function f computed by a Turing
machine transducer running in polynomial time such that for each x ∈ Σ∗,
x ∈ L1 iff f(x) ∈ L2.

Definition 4 Let Σ be a finite alphabet. A language L1 ⊆ Σ∗ is said to be log-
space reducible to a language L2 if there is a function f computed by a Turing
machine transducer using logarithmic space such that for each x ∈ Σ∗, x ∈ L1

iff f(x) ∈ L2.

As mentioned before, reductions give a way of comparing the complexity of
two languages. If L1 is reducible to L2, this means that L1 is “at least as easy”
as L2, or equivalently that L2 is “at least as hard” as L1. We can use the notion
to define hardness for complexity classes.

Definition 5 Let C be a complexity class and L be a language. L is said to be
hard for C under poly-time reductions (resp. log-space reductions) if for each
L′ ∈ C, L′ is poly-time reducible (resp. log-space reducible) to L.

Definition 6 Let C be a complexity class and L be a language. L is said to
be complete for C under poly-time reductions (resp. log-space reductions) if for
each L′ ∈ C, L′ is poly-time reducible (resp. log-space reducible) to L.

Intuitively, if L is complete for C, this means that L is the “hardest” language
in C. A priori, it is not clear that standard complexity classes have complete
languages. We show in the next Lecture Notes that not only is this the case,
but a variety of natural problems are complete for standard classes.

The following propositions justify our claim that L1 reducible to L2 means
that L1 is at least as easy as L2.

Proposition 7 If L1 is poly-time reducible to L2 and L2 ∈ P, then L1 ∈ P.

The proof of Proposition 7 is easy. A polynomial-time Turing machine M1

for L1 can be designed to first run the poly-time computable reduction f on its
input x and then run the polynomial-time Turing machine M2 for L2 on f(x),
accepting iff M2 accepts.

Proposition 8 If L1 is log-space reducible to L2 and L2 ∈ LOG, then L1 ∈
LOG.

4

The proof of Proposition 8 is trickier than that of Proposition 7. Suppose
we want to design a log-space machine M1 for L1 for which there is a log-space
reduction f to a a language L2 ∈ LOG. Say that the input to M1 is x. Note that
M1 cannot simply store f(x) on its tapes, since |f(x)| could be polynomial in
|x|, while M1 can only afford space O(log(|x|)). Instead of storing the output of
the reduction, M1 re-computes bits of the output as and when required. When
M1 simulates the operation of the log-space machine M2 for L2 on f(x), at any
stage in the simulation, M2 is reading a specific input bit of f(x), say the i’th
bit. Instead of storing all of f(x), M1 just keeps track of i, and when it needs
to simulate the move of M2 which involves reading the i’th bit of f(x), it runs
the reduction on x and retains only the i’th bit of the output. Once the current
move of M2 is completed, it updates i depending on whether M2 moves left,
right or remains stationary on its input tape. Thus, by continually representing
f(x) in an implicit fashion, M1 only needs to use O(log(f(|x|))) = O(log(|x|))
space.

5

