
1 Nondeterminism as a Resource

The resources we’ve studied thus far are time and space. These resources cor-
respond to performace measures for computers in the real world - runtime in
the case of time, and memory usage in the case of space. In this section of
the course, we broaden our notion of resource by considering nondeterminism,
which is not known to be physically implementable. However it is a very use-
ful notion in terms of achieving a deeper understanding of which problems are
“feasible” and which are not.

Just as the multi-tape Turing machine captured deterministic computation,
we define a notion of non-deterministic multi-tape Turing machine (NTM) to
capture non-deterministic computation. Formally, a k-tape NTM is a tuple
(Q, Σ, Γ, δ, q0, qf), where all these symbols have the same interpretation as with
a multi-tape TM, except that δ is now a relation, i.e., a subset of Q × Γk →
Qk × {L, R, S} rather than a partial function. The fact that δ is a partial
function for deterministic multi-tape TMs means that every configuration of
a multi-tape TM can have at most one next configuration; by allowing δ to
be a relation, we allow any given configuration to have several possible next
configurations. The choice of which configuration to go to next is interpreted
as a “guess” or “nondeterministic choice” of the machine.

More formally, let Ci be the current configuration of the NTM. Assume the
finite control is in some state q ∈ Q, and that the symbols being read on the
k tapes are a1, a2 . . . ak ∈ Γ. If (q, a1, a2, . . . ak, q′, a′

1, a
′
2 . . . a′

k, b1, b2 . . . bk) ∈ δ,
where a′

1, a
′
2 . . . a′

k ∈ Γ and b1, b2 . . . bk ∈ {L, R, S}, then the following configu-
ration C′ is an allowed next configuration for Ci: C′ is the same as Ci except
that each symbol ai is overwritten with a′

i, the i’th tape head has moved one
step in the direction bi, and the new state is q′.

A computation of a NTM M is a sequence of configurations C0, C1 . . . Ct,
where C0 is the initial configuration, Ct is a final configuration (i.e., accepting
or rejecting) and for each 1 6 i 6 t, Ci is an allowed next configuration for Ci−1.
A computation is accepting if the final configuration is accepting and rejecting
otherwise. An NTM M accepts an input x if there is an accepting computation
of M on x.

Non-deterministic Turing machines decide exactly the recursive languages
- this is further evidence for the Church-Turing thesis. However the situation
changes if resource constraints are imposed on NTMs. This is where the “power
of non-determinism” really comes into play.

We now define time-bounded and space-bounded NTMs. Given a time func-
tion T , an NTM M runs within time T if for each input x, every computation
of M halts within T (|x|) steps. Similarly, given a space function S, an NTM M
uses space at most S if for each input x, every computation of M uses space at
most S(|x|).

Now we are ready to define non-deterministic time and space classes.

Definition 1 Given a function T : N → N, NTIME(T) is the class of languages
L for which there is an NTM M which runs within time T and decides L.

1

Definition 2 Given a function S : N → N, NSPACE(S) is the class of languages
L for which there is an NTM M which uses space at most S and decides L.

As an informal example of the power of non-deterministic computation, con-
sider the problem of checking whether a partially completed Sudoku puzzle can
be extended to a valid solution. In general, there is no simple deterministic
solution for this, but non-deterministically, one could just guess numbers in all
the blank squares and then verify at the end that the numbers satisfy the con-
straints of Sudoku. This ability to make guesses is what gives non-deterministic
computation its power.

An example with much more practical relevance is the SAT problem of de-
ciding whether a Boolean formula in conjunctive normal form is satisfiable or
not. This problem is not known to be doable in polynomial time determinis-
tically but is easily seen to be in non-deterministic polynomial time - simply
guess Boolean values for each variable and then evaluate the formula with the
guessed values to verify that they do indeed satisfy the formula. If the formula
is satisfiable, there will be some sequence of guesses that works, and hence an
accepting computation of the corresponding NTM, while if the formula is un-
satisfiable, all computations will reject. Guessing a polynomial number of bits
can be done in polynomial time non-deterministically, and so can evaluating a
formula on a given assignment.

A good intuitive way of picturing the behaviour of an NTM on an input is via
its computation tree, where each node corresponds to a configuration. The root
corresponds to the initial configuration, and the children of a node v correspond
to the allowable next configurations for the configuration corresponding to v.
Note that for any fixed NTM M , there is an absolute constant C which bounds
the number of allowable next configurations for any configuration. Hence the
computation tree is of bounded degree. The leaves of the computation tree
correspond to accepting and rejecting configurations. An NTM M accepts on
an input x iff its computation tree on x has at least one accepting leaf. If an
NTM runs within time T on input x, then the depth of the tree is at most T .

2 Relationships among Nondeterministic and De-

terministic Classes

There are some obvious relationships between deterministic and non-deterministic
classes. Since deterministic TMs are special cases of NTMs, the following holds:

Proposition 3 Let T : N → N be any function. Then DTIME(T) ⊆ NTIME(T),
and DSPACE(T) ⊆ NSPACE(T).

Also, since no machine operating in time T can write on more than O(T)
worktape cells, the following holds:

Proposition 4 Let T : N → N be any function. Then NTIME(T) ⊆ NSPACE(T).

2

We next show an efficient simulation of non-deterministic time by determin-
istic space.

Theorem 5 Let T : N → N be a space-constructible function. Then NTIME(T) ⊆
DSPACE(T).

Proof. Let L ∈ NTIME(T), where T is a space-constructible function, and let
M be a non-deterministic machine deciding L in time T . We give a deterministic
space-bounded machine M ′ deciding L in space O(T). M ′ first uses the space-
constructibility of T to compute T in unary on a separate work tape, in space
O(T).

The basic idea of the simulation is for M ′ to cycle over all possible sequences
of length T of non-deterministic choices of M and check whether any of these
sequences leads to acceptance. The key is that cycling over all these sequences
can be done in deterministic space T , since space can be re-used. Moreover,
once all the non-deterministic choices are given, the remaining computation is
a deterministic time T computation, which is trivially in space T .

More formally, let K be a constant which is an absolute upper bound on
the number of allowable next configurations for any configuration of M . M ′

cycles over all K-ary sequences s of length T in lexicographic order (assuming
an arbitrary order on the elements of [K]). Note that M ′ has already computed
T , so it knows the length of the sequences over which it must cycle. For each
sequence s, M ′ simulates M on x by using the elements of s as non-deterministic
choices of M . It might so happen that a certain element of the sequence is not a
valid non-deterministic move for M at that stage, in which case M ′ immediately
rejects. Otherwise, it continues the simulation, storing on its worktapes the cur-
rent configuration of M during the simulation, and updating the configuration
according to the non-deterministic choices encoded by s. If the simulation of
M according to the sequence s of non-deterministic choices ends in acceptance,
M ′ accepts, otherwise it goes on to the next sequence. If no sequence results in
acceptance, M ′ rejects.

Clearly M ′ accepts iff there is an accepting computation of M on x. The
space usage of M ′ is O(T), since at most space O(T) is required to compute T ,
and then space O(T) is used to store the current sequence of non-deterministic
choices for M as well as the current configuration of M .

�

The next result is a strengthening of Theorem 4 in the previous lecture
notes. It gives a simulation of non-deterministic space by deterministic time
with exponential slowdown.

Theorem 6 Let S = Ω(log(n)) be a space-constructible function. Then NSPACE(S) ⊆
∪

c>1
DTIME(cS).

Proof. Let L be any language in NSPACE(S) and M be an NTM deciding L in
space O(S), where S is space-constructible. We define a deterministic TM M ′

deciding L in time cS for some constant c > 1.

3

The basic idea is to formulate the question of whether M accepts an input
x as a graph reachability question for a directed graph of size exponential in
S. As there are efficient deterministic algorithms for graph reachability such
as Depth-First Search (DFS) and Breadth-First Search (BFS) which operate in
linear time, this implies that whether x ∈ L can be decided in time exponential
in S. In order to formulate the graph reachability question, we define the notion
of configuration graph of an NTM M on an input x. The vertices of this graph are
possible configurations of M on x - there are at most (n+1)2O(S) such vertices,
by the same argument as in the proof of Theorem 4 in the previous lecture notes.
There is an edge from a vertex u to a vertex v of the configuration graph if the
configuration Cv corresponding to v is an allowable next configuration of Cu.
Now the question of whether M accepts x is precisely the question of whether
there is a path from the initial configuration C0 to an accepting configuration in
the configuration graph. Without loss of generality, we can assume that there
is exactly one accepting configuration - the reason is that we can modify M so
that if it accepts, it erases all the contents of its worktapes and moves the input
head pointer to the first symbol of the input before accepting.

More formally, on input x, M ′ first uses the space-constructibility of S to
compute S on a separate worktape in time at most exponential in S, using again
Theorem 4 in the previous lecture notes. Once it knows S, it can construct
explicitly on one of its worktapes a representation of the configuration graph
of M on x. This again takes time at most exponential in S, since there are an
exponential number of vertices and checking if a specific edge exists can be done
in polynomial time. Then M ′ runs the BFS algorithm to check if the accepting
configuration is reachable from the initial configuration in this graph. If yes, it
accepts, otherwise it rejects. Clearly M ′ decides correctly whether M decides x
and it does so in time exponential in S as long as S = Ω(log(n)). �

The most non-trivial result in this part of the lecture notes is Savitch’s
Theorem, which gives a quadratic simulation of non-deterministic space by de-
terministic space. Note that no analogue is known for time - to the best of our
knowledge, non-deterministic time can be exponentially more powerful than de-
terministic time. Thus space as a resource has quite different properties than
time. The key idea of the proof is to use a recursive divide-and-conquer approach
and reuse space between different parts of the recursion.

Theorem 7 [Savitch] Let S = Ω(log(n)) be a space-constructible function.
Then NSPACE(S) ⊆ DSPACE(S2).

Proof. Let L ∈ NSPACE(S) be a language, and let M be an NTM deciding
L in space O(S). We define a deterministic Turing machine M ′ deciding L in
space O(S2).

Let x be the input to M . There is some constant c > 1 such that there at
most cS(|x|) distinct configurations of M on x, using the argument in the proof
of Theorem 4 in the previous lecture notes, together with the assumption that
S = Ω(log(n)). Thus, if there is an accepting computation of M on x, there is
one of length at most cS(|x|). M ′ will use a sub-routine REACH(C, C′, t) which

4

given as input configurations C and C′ and a number t in binary, will return
“true” iff there is a path from C to C′ of length at most t in the configuration
graph of M on x. To decide whether x ∈ L, M ′ simply calls REACH(C0, Cf , cS)
where C0 is the initial configuration of M on x and Cf is the unique accepting
configuration. We will show that REACH can be implemented to take space
O(S log(t)) in general, which is O(S2) when t is at most exponential in S.

Note that REACH cannot store the configuration graph of M on x - that
would take too much space, since the configuration graph has exponentially
many nodes. Instead, REACH will operate recursively in an implicit fashion, re-
computing information as and when required. If t = 1, REACH can easily check
in space O(S) if C′ is an allowable next configuration for C. This is the base case
of the recursion. When t > 1, the key idea is that if there is a path from C to C′

of length at most t, there is a middle configuration D such that there is a path
from C to D of length at most ⌈t/2⌉ and a path from D to C′ of length at most
⌈t/2⌉. Of course REACH does not know a priori what this middle configuration
is. But it can cycle over all possible configurations D of M on x and for each
one, check recursively that REACH(C, D, ⌈t/2⌉) and REACH(D, C′, ⌈t/2⌉)
both return “true”. If this is the case, then REACH returns “true”, otherwise
it tries another configuration for the middle configuration. If for each possible
configuration D, either REACH(C, D, ⌈t/2⌉) or REACH(D, C′, ⌈t/2⌉) returns
“false”, REACH returns “false”.

The key to implementing REACH space-efficiently is to note that space can
be re-used between the two recursive calls of REACH . Thus the space usage of
REACH per level of recursion is simply O(S) to store D as well as information
about which recursive call it is executing. Since t goes down by a constant factor
with each level of recursion, the number of levels of recursion is O(log(t)), thus
the total space usage of REACH is O(S log(t)).

REACH has been described somewhat informally - by working out the de-
tails, one can construct a “Turing machine implementation” of REACH which
operates within the same space bound. �

We saw in the previous lecture notes that deterministic time and space com-
plexity classes are closed under various natural operations such as union, inter-
section and complementation. How about non-deterministic classes? It’s not
hard to see that the same proofs as in the deterministic case show that non-
deterministic time and space are closed under union and intersection as well.

Proposition 8 For any time bound t, NTIME(t) is closed under union and
intersection. The same closure results hold for space-bounded non-deterministic
cases.

We just sketch the proof for non-deterministic time being closed under union
- the proofs for the other results are analogous. Let L1 and L2 be any two
languages in NTIME(t). We need to show that L1 ∪L2 ∈ NTIME(t).Let M1 and
M2 be NTMs deciding L1 and L2 respectively in time O(t). We define an NTM
M deciding L in time O(t). M first runs M1 on its input and then M2, and

5

accepts if either accepts. It is easy to see that M has an accepting computation
on its input if and only if either M1 does or M2 does.

Unlike in the deterministic case, however, closure under complementation is
not known to hold for non-deterministic time. In the deterministic case, we just
switched accepting and rejecting states to obtain closure under complementa-
tion. This doesn’t work in the non-deterministic case - consider a computation
tree for which half the leaves are accepting and half the leaves are rejecting,
hence this tree corresponds to an input that is accepted by the machine. By
switching accepting and rejecting states, we still get a tree with half the leaves
accepting and half rejecting, i.e., the input will still be accepted by the machine.

Of course, it’s possible that a different simulation could work to obtain
closure under complementation. However, no such simulation is known, and
in fact it is generally believed that non-deterministic time is not closed under
complementation.

The situation is even more interesting for non-deterministic space. Here
too the simple trick used in the deterministic case does not work to establish
closure under complementation, and for a long time it was believed that non-
deterministic space is not closed under complementation. However, in 1988,
Immerman and Szelepcsenyi showed independently that this is true, using an
argument which is elementary but rather subtle. This argument is beyond the
scope of this course, but is available in a Supplementary Note on the web page
in case you are interested.

Theorem 9 (Immerman, Szelepcsenyi) Let S = Ω(n) be a space-constructible
space bound. Then L ∈ NSPACE(S) iff L̄ ∈ NSPACE(S).

How about hierarchies for non-deterministic time and space? For non-
deterministic space, the same argument as for deterministic space gives a hier-
archy. The key property of non-deterministic space used here is that it is closed
under complementation - this is what allows us to “flip the diagonal” in the
diagonalization argument. For non-deterministic time, however, this argument
does not work as closure under complementation is unknown, and a different
“indirect diagonalization” argument is required. The details are beyond the
scope of this course.

6

