
1 Time and Space Hierarchies

The most fundamental results in complexity theory are the hierarchy theorems,
which state that more problems can be solved given more resources. We will
now prove hierarchy theorems for the two resources we have defined so far: time
and space.

We first give a high-level overview of the proof ideas. The most important
idea used in the proof is diagonalization, which was used by Cantor to show
that the cardinality of the reals is greater than the cardinality of the natural
numbers. Diagonalization is also widely used in computability theory, eg., for
showing that the Halting Problem is uncomputable.

We will explain the proof idea for the time hierarchy; the proof of the space
hierarchy is very similar. Suppose we want to show that there are languages
decidable in deterministic time T but not in time t, where t and T are time
bounds where T is time-constructible and “sufficiently larger” than t. To es-
tablish this, we need to show both a complexity upper bound and a complexity
lower bound - we need to define a language L for which we can establish that
L ∈ DTIME(T) but L 6∈ DTIME(t). In general, it’s hard to show complexity
lower bounds for a problem because we need to prove that no conceivable Turing
machine operating within the stated resource bounds can solve the problem.

Diagonalization is one of the few techniques which is known to work in es-
tablishing lower bounds. Intuitively, diagonalization is a way of proving the
existence of an object that is not in a given countably infinite set of objects.
In Cantor’s proof, the objects are real numbers - the proof shows that for any
countabe list of real numbers, one can find a real number not in the list. In our
proof, the objects will be languages in DTIME(t), described by their characteris-
tic function. Imagine an infinite table A where A(i, j) is 1 iff the j’th bit of the
binary description of the i’th object is 1. Now, “flip the diagonal”, i.e., consider
the object X such that the i’th bit in the description of X is 1 iff A(i, i) is 0. X

cannot be in the list, because it differs in the i’th position of its representation
from the i’th element in the list, for any i.

As mentioned above, we apply diagonalization to some effective listing of the
languages in DTIME(t) - this listing can be done using the facts about encodings
of Turing machines in the notes on Lecture 2. This gives us a language L not in
DTIME(t), i.e., the lower bound. We still need to show that L is in DTIME(T) for
some T sufficiently larger than t. We will show this using the fact that there is a
time-efficient universal Turing machine, which enables us to “flip the diagonal”
efficiently. The formal proof is below, and incorporates some technical details
which we’ve ignored in our high-level description, such as the dependence of T

on t and the need for time-constructibility.

Theorem 1 Let t : N → N and T : N → N be functions such that T is time-

constructible and t log(t) = o(T). Then DTIME(t) ⊂ DTIME(T).

Proof. We define a machine M running in time T such that L(M) 6∈ DTIME(t).Given
an input x, M operates as follows. It first computes T (|x|) and stores this num-
ber in unary on one of its work tapes. This can be done in time O(T (|x|)) by

1

time-constructibility of T . It then simulates the Turing machine Mx encoded by
x on input x, by running the time-efficient universal Turing machine U whose
existence is stated in Theorem 1 of the previous Lecture Notes on input < x, x >.
This simulation makes sense by Property 1 of the encodings we use, mentioned
in the previous Lecture Notes. For each time step of U it simulates, it deletes a
1 from the unary representation of T (|x|) it has on a worktape. This worktape
is used as a “time clock” - if all the 1’s are deleted, then this means that there
is zero time left for the simulation, and M halts and rejects. If, on the contrary,
M is able to complete its simulation of U before the counter reaches zero, there
are two cases. If U rejects, then M halts and accepts. If U accepts, M halts
and rejects. (Intuitively, this behaviour corresponds to “flipping the diagonal”).

Clearly, M runs in time T , so L(M) ∈ DTIME(T). Now suppose that
L(M) ∈ DTIME(t). We will derive a contradiction. Let M ′ be a Turing machine
halting within cn time steps on any input of length n, where c is a constant,
and deciding L(M). By Property 2 of the encodings of Turing machines we
use, mentioned in the previous Lecture Notes, for any integer m, there is an
encoding y of M ′ such that |y| > m. Now since t log(t) = o(T) there must be
an integer m such that cdM ′ t(m) log(t(m)) < T (m), where dM ′ is the constant
in Theorem 1 of the previous Lecture Notes. Choose an encoding y of M ′ such
that |y| > m. Now consider the behaviour of M and M ′ on y. M on input y

has enough time to complete the simulation of U before its counter hits zero, by
the assumption on length of y. Therefore M accepts y iff U rejects on < y, y >,
which happens iff M ′ rejects on y. Thus L(M)! = L(M ′), which contradicts the
assumption on M ′. �

The proof of the space hierarchy is exactly analogous, except that the pa-
rameters of the result are slightly stronger, since we use Theorem 2 from the
previous Lecture Notes rather than Theorem 1, and the counter is used to record
the space used by the simulation rather than the time.

Theorem 2 Let s : N → N and S : N → N be functions such that S is space-

constructible. Then DSPACE(s) ⊂ DSPACE(S).

2 Relationships between Time and Space, and

Closure Properties of Complexity Classes

There are some straightforward relationships which hold between time and space
complexity classes, which we describe next.

Proposition 3 Let T be any time bound. DTIME(T) ⊆ DSPACE(T).

The reason is that any computation halting after at most t steps cannot use
space more than t.

The best known simulation of space by time is much weaker.

Theorem 4 Let S be any space bound such that S is space-constructible and

S = Ω(log(n)). Then DSPACE(S) ⊆ ∪
c>1

DTIME(cS).

2

Proof. Let L be any language in DSPACE(S) and M be a machine with read-
only input tape deciding L in space O(S). The key observation is that there
are at most (n + 1)2O(S) possible configurations of M on any input of length
n, since a configuration of M is completely described by the position of the
input tape head, the positions of the work tape heads, the contents of the work
tapes and the state. There are at most (n + 1) possible positions of the input
tape head, at most poly(S) possible positions of work tape heads, at most 2O(S)

possible contents of work tapes, and at most constantly many possible states of
the machine.

Now if any configuration repeats in the computation of M on x, the com-
putation cannot halt, since M is a deterministic machine. So any accepting
computation must terminate within (n + 1)2O(S) steps. This is at most 2O(S)

if S = Ω(log(n)). We define a deterministic Turing machine M ′ accepting L

and halting within time cS for some constant c > 1. M ′ first uses the space-
constructibility of S to obtain the unary representation of dS in unary within
time dS , where d is a constant such that the number of possible configurations
of M on input x is bounded above by dS . There is a subtlety here, in that
space-constructibility doesn’t immediately imply time-constructibility, but here
we can again use the fact that configurations of the space transducer cannot
repeat to obtain the time bound for the first part of the computation of M ′. M ′

then uses the number it has computed as a “clock” while it simulates M on x.
If the clock runs out, M ′ rejects. If the simulation of M completes before this
happens, M ′ accepts if and only if M accepts.

Clearly M ′ runs in time 2O(S), and decides L correctly using our upper
bound on the termination time of M on x. �

Also of interest are closure properties of complexity classes. We would like
complexity classes to be robust, i.e., closed under simple operations like union
and intersection. We next observe that deterministic time and space complexity
classes satisfy this condition.

Proposition 5 For any time bound t, DTIME(t) is closed under union and

intersection. Namely, given L1 ∈ DTIME(t) and L2 ∈ DTIME(t), L1 ∪ L2 ∈
DTIME(t) and L1 ∩ L2 ∈ DTIME(t). The same closure results hold for space-

bounded classes.

The proof of the above proposition is simple. To observe closure under union,
let M1 be a machine deciding L1 in time O(t) and M2 a machine deciding L2 in
time O(t). Then a machine M which accepts on x iff either M1 or M2 accepts
on x halts in time O(t) and decides L1 ∪ L2. Similarly, a machine M ′ which
accepts on x iff both M1 and M2 accept on x halts in time O(t) and decides
L1 ∩ L2.

Closure under complementation also holds, with just a slightly more involved
argument.

Proposition 6 If L ∈ DTIME(t), then L̄ ∈ DTIME(t). Similarly for DSPACE(s).

3

The proof is just by interchanging accepting and rejecting states. Note that
a time-bounded machine halts on all inputs. So the only ways it could reject
are by falling off the end of a tape, or by reaching a configuration where there
is no next transition. We could modify the machine so that it enters a rejecting
state qr in either of these cases. Now the Turing machine where the accepting
state qf and the rejecting state qr of this modified machine are swapped halts
in time t and decides the complement of L.

4

