
1 Motivation

Complexity Theory studies the possibilities and limits of efficient computation.
Suppose there is a computational problem P we wish to solve. The first step
is to design an algorithm A for P, which we can then implement in a computer
program. However, not all algorithms are created equal. We might find that our
algorithm takes a really long time to produce an answer on even reasonably-sized
inputs, or that it exhausts the memory available to it.

The first motivation for complexity theory is that we’d like to quantify the
performance of an algorithm, in terms of its computational resource require-
ments. Given our problem-solving needs and the computational resources avail-
able to us, we will have an idea of what a “reasonable level of performance” is,
and we can then focus our attention on algorithms which achieve this level of
performance.

This gives some motivation for the analysis of algorithms, but computational
complexity is far wider in its scope. Suppose we are unable to design an efficient
algorithm A for the problem P. There could be different explanations for this.
Such an algorithm A might exist, but we might just not be clever enough to
find it. Alternatively, such an algorithm might not exist even in principle, i.e.,
the problem might be intractable.

Clearly, it would be very useful to know which problems are efficiently solv-
able and which ones are intractable. Complexity theory assists us in clarifying
the difficulty of solving problems. It does this in different ways - eg., uncondi-
tionally showing that a problem cannot be solved efficiently in a certain model,
or showing that a wide variety of problems are equivalent in terms of their dif-
ficulty, meaning that solving one of them is tantamount to solving all of them.
As much as for its theorems, complexity theory is useful in giving us a language
and an arsenal of concepts for talking about the difficulty of problem-solving.

2 Languages and Machines

In complexity theory, we try to understand in an abstract setting the resource
requirements of computational problems on a computational model. In order to
do this, we need to formalize what we mean by “computational problem” and
by “computational model”.

2.1 Computational Problems: Languages

In terms of problems, we focus our attention on decision problems, i.e., problems
with a YES/NO answer. Such problems are modelled as languages, i.e., as sets
of strings over a finite alphabet, which is usually {0, 1}. Here’s the equivalence
between decision problems and languages: the membership of a string w in a
language is interpreted as a YES answer on input w for the corresponding deci-
sion problem. One might ask why we only consider inputs that are strings, given
the wide variety of types of data encountered in practice - numbers, matrices,

1

graphs etc. The reason is that in complexity theory, the specific representa-
tion of data is irrelevant, and most natural kinds of data can be represented as
strings using a natural encoding.

The restriction to YES/NO outputs is again a way of simplifying the setting
without losing generality. A large part of the theory we derive for decision
problems can be translated easily to the more general setting. One of the great
virtues of complexity theory is that the main ideas and principles are flexible
and capable of adaptation to a variety of settings.

2.2 Computational Model: Turing Machines

In terms of computational models, we study the model of the multi-tape Turing
machine. Formally, a k-tape Turing machine is a tuple (Q, Σ, Γ, δ, q0, qf), where:

• Q is a finite set of states.

• Σ is a finite input alphabet.

• Γ ⊇ Σ ∪ B is a finite tape alphabet, where B is a specially designated
blank symbol.

• δ : Q×Γk → Q×Γk ×{L, R, S} is the transition function. The transition
function may be undefined on some inputs.

• q0 ∈ Q is the start state.

• qf ∈ Q is the accepting state.

We now describe how this formalism is interpreted. A k-tape Turing machine
consists of a finite control together with k linear tapes, divided into equal-sized
tape cells. Each tape is infinite to the right, and has an attached tape head
positioned at one of the tape cells. One of these tapes is a read-only input tape,
and the others are read/write. At the beginning of the computation, all the
tapes except the input tape are blank, meaning that each tape cell contains the
blank symbol. The input tape has the input w written on the first |w| cells,
with the remaining cells being blank. For each tape, the tape head points to
the leftmost tape cell.

At each step in the computation, the finite control is in some state q ∈ Q,
with the state at the beginning being q0. The computation evolves as fol-
lows.At time t, assume the finite control is in state qt and the symbols being
read on the k read/write tapes are a1, a2 . . . ak ∈ Γ. Let δ(qt, a1, a2 . . . ak) =
(q′, a′

1, a
′

2 . . . a′

k, b1, b2 . . . bk), where each bi ∈ L, R, S. Then the state qt+1 of
the finite control at time t + 1 is q′, and for each i, 1 ≤ i ≤ k, the symbol ai is
overwritten by a′

i on the i’th tape. Moreover, for each i, depending on whether
bi = L, R or S, the tape head on the i’th tape either moves one place left, one
place right, or remains stationary.

Starting at time 0, the computation continues to evolve in this way un-
til one of two things happens. If the finite control attains state qf at any

2

point, the computation halts and the Turing machine accepts. If at any time t,
δ(qt, a1, a2 . . . ak) is undefined, the computation halts and the Turing machine
rejects.

We say the Turing machine M accepts an input w if it halts and accepts on
w, otherwise we say it rejects on w. We say that a Turing machine M decides
a language L ⊆ Σ∗ if for each w ∈ Σ∗, w ∈ L iff M accepts w.

On occasion, the k-tape Turing machine is equipped with an extra write-
only tape called the output tape. A Turing machine of this kind is called
a transducer. Just as regular Turing machines decide languages, transducers
compute functions from Σ∗ to Γ∗. The output of a transducer M on input x

is the string y that is present on the output tape when M halts. Note that,
with transducers, the distinction between acceptance and rejection is no longer
relevant. Note also that a transducer might not always halt on every input, in
which case it computes a partial function.

We will require a standard notation for configurations of a Turing machine.
A configuration C is of the form (q, i, (u1, v1), (u2, v2) . . . (uk−1, vk−1)), where
q ∈ Q, i ∈ N and for each i, 1 ≤ i ≤ k − 1, ui, vi ∈ Γ∗. This is interpreted to
mean that the Turing machine is in state q, the input head is reading the i’th
cell on the input tape, and for each i, 1 ≤ i ≤ k − 1, the contents of the i + 1’th
tape are uivi, with the tape head reading the |ui| + 1’th cell. A configuration
C′ succeeds a configuration C if the Turing machine moves in one time step
from configuration C to C′. A computation of a Turing machine is a sequence
of configurations C0, C1 . . . CT such that C0 is the initial configuration, CT is a
halting configuration, and for each i, 1 ≤ i ≤ T , configuration Ci succeeds Ci−1.

2.3 Why Turing Machines?

The choice of the multi-tape Turing machine as our model of computation might
seem rather arbitrary, as it does not seem to correspond to any model of compu-
tation we encounter in the real world. However, the multi-tape Turing machine
is in fact universal, in the sense that any “reasonable” abstract model of compu-
tation we might define (where “reasonable” means that the model is finitistic,
with computation proceeding according to local rules) is simulated by the Tur-
ing machine. This is not a theorem, but rather a widely believed empirical fact,
known as the “Church-Turing thesis”. A stronger version of this, known as the
“Polynomial-time Church-Turing thesis” appears to be true, and this is particu-
larly relevant to complexity theory. The Polynomial-time Church-Turing thesis
states that any reasonable model of computation can be simulated efficiently by
a Turing machine, where here “efficient” means that there is at most a polyno-
mial slowdown in time. Thus the notion of efficient computation is robust with
respect to the choice of model.

In this context, the multi-tape Turing machine is a good model for two
reasons. First, different computational resources such as time, space, non-
determinism and randomness have natural interpretations in this model (or in
minor variants of this model). Second, while it can be complicated and tedious
to design Turing machines to solve specific problems (somewhat akin to writing

3

assembly language code), the conceptual simplicity of the model makes it easier
to prove theorems about. There is a trade-off between the ease of problem-
solving in a model and the ease of proving theorems about the model. Models
with lots of features are easier to program in, but simpler, more limited models
are more convenient to study theoretically.

You should not take the Polynomial-time Church-Turing thesis on faith. I
encourage you to dream up other models of computation, or to take existing
ones such as register machines or your favorite programming language, and
verify that they can be simulated efficiently on multi-tape Turing machines.

4

