
Computational Complexity, 2012–13 1

Solutions to Exercise Sheet 3

1. Question: Show that if NP ⊆ BPP, then NP = RP. HINT: Use the down-
ward self-reducibility of SAT to eliminate error on NO instances.

Solution: Assume NP ⊆ BPP. Note that RP ⊆ NP unconditionally, hence
we just need to show that NP ⊆ RP. Since SAT is NP-complete and RP is
closed under polynomial-time m-reductions, it is enough to show that SAT
is in RP.

By assumption SAT is in BPP. Let M be a probabilistic Turing machine
running in polynomial time and accepting SAT with error at most 1/3.
Using error amplification, we can define a probabilistic Turing machine M ′

running in polynomial time and accepting SAT with error at most 2−Ω(n),
where n is the input length. We will define a probabilistic Turing machine
N running in polynomial time, which on input φ, accepts with probabil-
ity at least 1/2 if φ is satisfiable, and accepts with probability 0 if φ is
unsatisfiable.

The basic idea is to use downward self-reducibility to construct a satisfying
assignment with high probability for YES instances, and to accept only
if a satisfying assignment has been constructed. More precisely, N does
the following on an input φ. Assume wlog that the variables in φ are
x1, x2 . . . xm. N first runs M on φ. If M rejects, N rejects. Otherwise N
sets x1 to “false” in φ and runs M on the corresponding formula φ0. If M
accepts, N continues to build a satisfying assignment by setting x2 to “false”
in φ0 and running M on the corresponding formula φ00. If M rejects, N runs
M on formula φ1 obtained by setting x1 to “true” in φ, continuing to build
an assignment if M accepts on φ1 and rejecting otherwise. This process
continues until either N rejects or all variables are set. If the latter, N
checks whether the corresponding assignment satisfies φ. If yes, it accepts,
otherwise it rejects.

N runs in polynomial time since it makes at most a linear number of calls
to the polynomial-time probabilistic TM M , and each of these calls is on
an input whose length is at most the length of φ (setting variables can
only decrease the length of a formula). N never accepts on an unsatisfiable
formula, hence all we need to show is that N accepts with probability at
least 1/2 on a satisfiable formula. Note that if M always gives correct
answers on calls to M , then when φ is satisfiable, N constructs a satisfying
assignment to φ and hence accepts. The probability that this happens is
at least 1 − n2−Ω(n), which is at most 1/2 for large enough n, since the
probability that M gives at least one wrong answer is at most n2−Ω(n) by
the union bound.

2. Question: Indecisive Turing machines are Turing machines which, in addi-

Computational Complexity, 2012–13 2

tion to accepting and rejecting states, have a “don’t know” state in which
the computation may terminate. A language L is said to be in ZPP (zero-
error probabilistic polynomial time) if there is an indecisive randomized
Turing machine M halting in polynomial time such that:

(a) If x ∈ L, M does not halt in a rejecting state on any computation
path (it halts either in an accepting state or the “don’t know” state),
and it halts in an accepting state with probability at least 1/2.

(b) If x 6∈ L, M does not halt in an accepting state on any computation
path (it halts either in a rejecting state or the “don’t know” state),
and it halts in a rejecting state with probability at least 1/2.

Prove that ZPP = RP ∩ coRP.

Solution: Note that when asked to show an equality between two complexity
classes, you need to show two things: that the first complexity class is
contained in the second, and that the second complexity class is contained
in the first.

We first show that ZPP ⊆ RP∩coRP. This is the easier part of the argument.
We simply show that ZPP ⊆ RP, and from the fact that ZPP is closed
under complement (which can be seen just from switching acceptance and
rejection in the definition), we also get that ZPP ⊆ coRP.

Let L ∈ ZPP. Then there is an indecisive Turing machine M ′ running in
polynomial time and deciding L, as per the definition. We define a machine
M ′ which is a randomized Turing machine in the usual sense and witnesses
that L ∈ RP. M ′ is the same as M , except that now “don’t know” states
are also labelled as accepting. Now we have that if x ∈ L, M accepts with
probability 1/2 and if x 6∈ L, M accepts with probability 0. Moreover, M
runs in polynomial time (since M ′ does). Thus L(M) = L ∈ RP.

Next we show that RP ∩ coRP ⊆ ZPP. Let L ∈ RP ∩ coRP. Let M be
a randomized polynomial-time Turing machine witnessing that L ∈ RP
and M ′ be a randomized polynomial-time Turing machine witnessing that
L ∈ coRP. We define an indecisive polynomial-time machine N witnessing
that L ∈ ZPP.

Given input x, N simulates both M and M ′ on x. If M accepts, then N
accepts. If M ′ rejects, then N rejects. If M rejects and M ′ accepts, then
N halts in a “don’t know” state.

Clearly N is polynomial-time. If x ∈ L, then M accepts with probability
at least 1/2, and so by definition of N , N accepts with probability at least
1/2 as well. Moreover, if x ∈ L, M ′ accepts with probability 1, hence N
rejects with probability 0, i.e., it always halts in either an accepting state
or a “don’t know” state.

Computational Complexity, 2012–13 3

If x 6∈ L, then M ′ rejects with probability at least 1/2, so N rejects with
probability at least 1/2. Moreover, if x 6∈ L, M accepts with probability
0, so N never accepts, i.e., N always halts either in a rejecting state or a
“don’t know” state.

Thus N witnesses that L ∈ ZPP.

3. Question: PCP[r(n), q(n)] is the class of languages accepted by probabilisti-
cally checkable proof systems where the verifier uses at most r(|x|) random
bits and makes at most q(|x|) non-adaptive queries to the proof on any
input x. Show that PCP[0, log(n)] = P.

Solution: We first show that P ⊆ PCP[0, log(n)], and then the converse.

Let L ∈ P and let M be a deterministic polynomial-time machine decides
L. We define a probabilistically checkable proof system with no randomness
and 0 queries deciding L. We define the verifier V for this proof system
as follows: V does not access the proof at all, instead it simulates M on
x, accepting if M accepts and rejecting otherwise. If x ∈ L, then there
exists a proof such that V accepts with probability 1 (indeed this is true
irrespective of the proof), and if x 6∈ L, then for all proofs V rejects with
probability 1, showing that L ∈ PCP[0, 0] ⊆ PCP[0, log(n)].

The harder part is showing that PCP[0, log(n)] ⊆ P. Let L ∈ PCP[0, log(n)].
This means that there is a proof system with a polynomial-time verifier V
using no randomness and making at most log(n) non-adaptive queries on
any input x of length n which decides L. We use V to define a polynomial-
time Turing machine M deciding L.

Note that V uses no randomness, therefore it either simply accepts or simply
rejects. Moreover, whether it accepts or rejects is purely a function of the
input x and the at most log(n) proof bits that V reads. If there were a
proof for which V accepted, then there would be some (0, 1)-assignment to
these proof bits for which V would accept. And if V were to reject for every
proof, then no (0, 1)-assignment to the proof bits could cause V to reject.

We define M as follows. Given input x of length n, M simply searches over
all possible assignments to the at most log(n) proof bits accessed by V on
input x, and checks whether V accepts for any of these assignments. If yes,
it accepts, otherwise it rejects. The time complexity of M arises from the
exhaustive search over assignments, and the complexity of simulating V .
The first is polynomial-time since there are at most log(n) proof bits to be
considered and hence at most n assignments; the second is polynomial-time
since V is polynomial-time. M accepts exactly those inputs x accepted by
the proof system, hence M decides L correctly.

Rahul Santhanam, Apr 2013

