COMPUTATIONAL COMPLEXITY, 2012-13 1

Solutions to Exercise Sheet 3

1. Question: Show that if NP C BPP, then NP = RP. HINT: Use the down-
ward self-reducibility of SAT to eliminate error on NO instances.

Solution: Assume NP C BPP. Note that RP C NP unconditionally, hence
we just need to show that NP C RP. Since SAT is NP-complete and RP is
closed under polynomial-time m-reductions, it is enough to show that SAT
is in RP.

By assumption SAT is in BPP. Let M be a probabilistic Turing machine
running in polynomial time and accepting SAT with error at most 1/3.
Using error amplification, we can define a probabilistic Turing machine M’
running in polynomial time and accepting SAT with error at most 2~%()
where n is the input length. We will define a probabilistic Turing machine
N running in polynomial time, which on input ¢, accepts with probabil-
ity at least 1/2 if ¢ is satisfiable, and accepts with probability 0 if ¢ is
unsatisfiable.

The basic idea is to use downward self-reducibility to construct a satisfying
assignment with high probability for YES instances, and to accept only
if a satisfying assignment has been constructed. More precisely, N does
the following on an input ¢. Assume wlog that the variables in ¢ are
T1,%a...Tym. N first runs M on ¢. If M rejects, N rejects. Otherwise N
sets x; to “false” in ¢ and runs M on the corresponding formula ¢q. If M
accepts, N continues to build a satisfying assignment by setting x5 to “false”
in ¢g and running M on the corresponding formula ¢gg. If M rejects, N runs
M on formula ¢; obtained by setting x; to “true” in ¢, continuing to build
an assignment if M accepts on ¢, and rejecting otherwise. This process
continues until either N rejects or all variables are set. If the latter, N
checks whether the corresponding assignment satisfies ¢. If yes, it accepts,
otherwise it rejects.

N runs in polynomial time since it makes at most a linear number of calls
to the polynomial-time probabilistic TM M, and each of these calls is on
an input whose length is at most the length of ¢ (setting variables can
only decrease the length of a formula). N never accepts on an unsatisfiable
formula, hence all we need to show is that N accepts with probability at
least 1/2 on a satisfiable formula. Note that if M always gives correct
answers on calls to M, then when ¢ is satisfiable, N constructs a satisfying
assignment to ¢ and hence accepts. The probability that this happens is
at least 1 — n27% which is at most 1/2 for large enough n, since the
probability that M gives at least one wrong answer is at most n2-% by
the union bound.

2. Question: Indecisive Turing machines are Turing machines which, in addi-

COMPUTATIONAL COMPLEXITY, 2012-13 2

tion to accepting and rejecting states, have a “don’t know” state in which
the computation may terminate. A language L is said to be in ZPP (zero-
error probabilistic polynomial time) if there is an indecisive randomized
Turing machine M halting in polynomial time such that:

(a) If x € L, M does not halt in a rejecting state on any computation
path (it halts either in an accepting state or the “don’t know” state),
and it halts in an accepting state with probability at least 1/2.

(b) If = ¢ L, M does not halt in an accepting state on any computation
path (it halts either in a rejecting state or the “don’t know” state),
and it halts in a rejecting state with probability at least 1/2.

Prove that ZPP = RP N coRP.

Solution: Note that when asked to show an equality between two complexity
classes, you need to show two things: that the first complexity class is
contained in the second, and that the second complexity class is contained
in the first.

We first show that ZPP C RPNcoRP. This is the easier part of the argument.
We simply show that ZPP C RP, and from the fact that ZPP is closed
under complement (which can be seen just from switching acceptance and
rejection in the definition), we also get that ZPP C coRP.

Let L € ZPP. Then there is an indecisive Turing machine M’ running in
polynomial time and deciding L, as per the definition. We define a machine
M’ which is a randomized Turing machine in the usual sense and witnesses
that L € RP. M’ is the same as M, except that now “don’t know” states
are also labelled as accepting. Now we have that if x € L, M accepts with
probability 1/2 and if = ¢ L, M accepts with probability 0. Moreover, M
runs in polynomial time (since M’ does). Thus L(M) = L € RP.

Next we show that RP N coRP C ZPP. Let L € RP N coRP. Let M be
a randomized polynomial-time Turing machine witnessing that L € RP
and M’ be a randomized polynomial-time Turing machine witnessing that

L € coRP. We define an indecisive polynomial-time machine N witnessing
that L € ZPP.

Given input x, N simulates both M and M’ on x. If M accepts, then N
accepts. If M’ rejects, then N rejects. If M rejects and M’ accepts, then
N halts in a “don’t know” state.

Clearly N is polynomial-time. If z € L, then M accepts with probability
at least 1/2, and so by definition of N, N accepts with probability at least
1/2 as well. Moreover, if x € L, M’ accepts with probability 1, hence N
rejects with probability 0, i.e., it always halts in either an accepting state
or a “don’t know” state.

COMPUTATIONAL COMPLEXITY, 2012-13 3

If v ¢ L, then M’ rejects with probability at least 1/2, so N rejects with
probability at least 1/2. Moreover, if © ¢ L, M accepts with probability
0, so N never accepts, i.e., N always halts either in a rejecting state or a
“don’t know” state.

Thus N witnesses that L € ZPP.

3. Question: PCP[r(n), ¢(n)] is the class of languages accepted by probabilisti-
cally checkable proof systems where the verifier uses at most r(|x|) random
bits and makes at most ¢(|z|) non-adaptive queries to the proof on any
input z. Show that PCP|0,log(n)] = P.

Solution: We first show that P C PCP[0, log(n)], and then the converse.

Let L € P and let M be a deterministic polynomial-time machine decides
L. We define a probabilistically checkable proof system with no randomness
and 0 queries deciding L. We define the verifier V' for this proof system
as follows: V' does not access the proof at all, instead it simulates M on
x, accepting if M accepts and rejecting otherwise. If x € L, then there
exists a proof such that V' accepts with probability 1 (indeed this is true
irrespective of the proof), and if x ¢ L, then for all proofs V rejects with
probability 1, showing that L € PCP[0,0] C PCP|0, log(n)].

The harder part is showing that PCP[0,log(n)] C P. Let L € PCPJ0, log(n)].
This means that there is a proof system with a polynomial-time verifier V'
using no randomness and making at most log(n) non-adaptive queries on
any input x of length n which decides L. We use V' to define a polynomial-
time Turing machine M deciding L.

Note that V' uses no randomness, therefore it either simply accepts or simply
rejects. Moreover, whether it accepts or rejects is purely a function of the
input z and the at most log(n) proof bits that V' reads. If there were a
proof for which V" accepted, then there would be some (0, 1)-assignment to
these proof bits for which V' would accept. And if V' were to reject for every
proof, then no (0, 1)-assignment to the proof bits could cause V' to reject.

We define M as follows. Given input x of length n, M simply searches over
all possible assignments to the at most log(n) proof bits accessed by V' on
input z, and checks whether V' accepts for any of these assignments. If yes,
it accepts, otherwise it rejects. The time complexity of M arises from the
exhaustive search over assignments, and the complexity of simulating V.
The first is polynomial-time since there are at most log(n) proof bits to be
considered and hence at most n assignments; the second is polynomial-time
since V' is polynomial-time. M accepts exactly those inputs z accepted by
the proof system, hence M decides L correctly.

Rahul Santhanam, Apr 2013

