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Reading: Tenenbaum and Griffiths (2001).
Note: Griffiths and Tenenbaum (2005) provides a much longer but easier

to understand presentation, also with some additional material.

Sharon Goldwater Cognitive Modeling 2

Background
Learning Causal Graphical Models

Evaluation

Causality
∆P and Causal Power
Problems with Previous Models

Causal Graphical Models

In the last lecture, we introduced causal graphical models:

they are an extension of graphical models that can deal with
interventions as well as observations;

we saw that respecting the direction of causality results in
efficient representation and inference;

Today, we’ll look at modeling human learning of causal
relationships using causal graphical models.
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Rating Causality

Experiment: subjects are shown contingency data and must rate
P(C → E ), the probability that an event C causes outcome E .

Example: case studies with data from experiments in which rats
are injected with a certain chemical and tested for expression of a
certain gene.

Case 1: 40 out of 100 injected rats express the gene, 0 out
100 uninjected rats express the gene (40/100, 0/100);

Case 2: 7 out of 100 injected rats express the gene, 0 out 100
uninjected rats express the gene (7/100, 0/100);

Case 3: 53 out of 100 injected rats express the gene, 46 out
100 uninjected rats express the gene (53/100, 46/100).

How do you rate P(C → E ) in each case?
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Rating Causality

Experimental results (ratings on a 0–20 scale):

Case 1 Case 2 Case 3

Rating 14.9± 0.8 8.6± 0.9 4.9± 0.7
P(e+|c+) 0.40 0.07 0.53

So clearly, subjects are not just using conditional probability:
P(C → E ) 6= P(e+|c+).

Two competing rational models have been proposed in the
literature to explain these experimental results:

∆P model

causal power model
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∆P

The ∆P model assumes people estimate P(C → E ) as:

∆P = P(e+|c+)− P(e+|c−)

P(e+|c+) and P(e+|c−) are computed as relative frequencies.

Causality is indicated by a large difference in the probability of
the effect when the cause is absent or present.

Can be shown to be equivalent to evaluating the associative
strength between cause and effect.
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Causal Power

The causal power model assumes people estimate P(C → E ) as:

power =
∆P

1− P(e+|c−)

Based on axiomatic characterization of causality (Cheng
1997).

Normalizes ∆P by cases where C could be observed to
influence E .

(36/60, 30/60): ∆P = 0.1, power = 0.2.
(60/60, 54/60): ∆P = 0.1, power = 1.
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∆P vs. Causal Power

Both ∆P and causal power predict some trends in experimental
data (more on this later), but don’t fully account for the data.

Case 1 Case 2 Case 3

Rating 14.9± 0.8 8.6± 0.9 4.9± 0.7
P(e+|c+) 0.40 0.07 0.53
P(e+|c−) 0 0 0.46

∆P 0.40 0.07 0.07
power 0.40 0.07 0.13
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Problematic Effects

1. Effect of P(e+|c−) when ∆P = 0:

Example: (8/8, 8/8), (4/8, 4/8), (0/8, 0/8).

Both ∆P and power predict P(C → E ) = 0 for all cases.

But: subjects judge P(C → E ) to decrease across these cases.

Intuitive explanation: when P(e+|c−) is lower, more
opportuniy to observe C exert an effect, but still no effect.
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Problematic Effects

2. Sample size effect:

Example: (2/4, 0/4), (10/20, 0/20), (25/50, 0/50).

Both ∆P and power predict P(C → E ) = .5 for all cases.

But: subjects judge P(C → E ) to increase across cases.

Intuitive explanation: in small samples, effects could be just
random noise.
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Problematic Effects

3. Non-monotonic effects of changing P(e+|c−):

Example: (30/30, 18/30), (24/30, 12/30), (12/30, 0/30).

∆P predicts constant P(C → E ), power predicts a decrease.

But: subjects judge P(C → E ) slightly lower for middle case.

Previous researchers assumed this effect was just odd and
ignored it.
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Rethinking Causal Learning

Using Bayes nets, Tenenbaum and Griffiths (2001) provide an
explanation for the failures of ∆P and causal power and suggest
an alternative model.

Both ∆P and causal power can be viewed as estimating
parameters of a particular causal graphical model.

Tenenbaum and Griffiths (2001) suggest that subjects are
actually performing structure learning : choosing between two
different causal graphical models.

That is, previous models assumed people are judging the strength
of causation, new model assumes they are judging the existence of
causation.
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Analyzing ∆P and Causal Power

Given the following Bayes net:

C
w w

E

B C

B

C : cause
E : effect
B: background (alternative cause/causes), with B=1 always.
wB , wC : parameters (effect strengths) P(E |B), P(E |C ).

We can analyze the ∆P and Causal Power models as two different
parameterizations (i.e., ways of defining P(E |B,C ).
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Parameterization

C
w w

E

B C

B

Linear parameterization: the effect strengths of B and C are
additive.

P(e+|c−, b+) = wB

P(e+|c+, b+) = wB + wC
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Parameterization

C
w w

E

B C

B

Noisy-OR parameterization: C and B act as independent causes.

P(e+|c−, b+) = wB

P(e+|c+, b+) = wB + wC − wBwC

Reduces to standard OR if wB = wC = 1.
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Structure Learning

Tenenbaum and Griffiths (2001) show that:

∆P corresponds Bayes net with linear parameterization;

causal power corresponds to Bayes net with noisy-OR
parameterization

where parameters wB and wC are estimated using maximum
likelihood estimation.

Key insight: causal inference is a judgment of whether a causal link
exists, not how strong the effect is. So, subjects are really doing
structure learning for Bayes nets.
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Structure Learning

Hypothesis: subjects are deciding between the following two Bayes
nets:

w w

E

B C

B C

h
C

= 1

w

E

B C

B

h
C

= 0

Does cause C have an influence on effect E?

Tenenbaum and Griffiths (2001) use Bayesian inference over model
structures to make this decision.
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Causal Support

Tenenbaum and Griffiths’s (2001) Causal Support model assumes:

subjects’ judgments correspond to inferences about the
underlying causal structure, i.e. the probability that C is a
direct cause of E ;

formally: decide between hC = 1 (graph in which C is a parent
of E ) and hC = 0 (graph in which C is not a parent of E );

this amounts to estimating the log posterior odds of hC :

support = log
P(hC = 1|X )

P(hC = 0|X )
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Computing Causal Support

support = log
P(hC = 1|X )

P(hC = 0|X )

Assuming the prior probability of each graph is 0.5,

support = log
P(X |hC = 1)

P(X |hC = 0)

Compute P(X |hC = 1) by summing over possible parameter values
(Bayesian inference):

P(X |hC = 1) =

∫ 1

0

∫ 1

0

P(X |wB ,wC , hC = 1)p(wB ,wC |hC = 1)dwB dwC

Similarly for P(X |hC = 0).
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Computing Causal Support

P(X |hC = 1) =

∫ 1

0

∫ 1

0

P(X |wB ,wC , hC = 1)p(wB ,wC |hC = 1)dwB dwC

Assume P(wB ,wC |hC = 1) is uniform (no particular prior
knowledge about parameter values).

Assume P(X |wB ,wC , hC = 1) follows noisy-OR
parameterization.

Actual computation requires a computer program.

Can also compute other values from this model, e.g. p(wc |X ).

Causal Support is high when p(wc |X ) has most of its mass on
non-zero values.
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Comparison of the Models

w w

E

B C

B C

h
C

= 1

w

E

B C

B

h
C

= 0

Comparison of the three models:

Model Form of P(E |B,C ) P(C → E )

∆P Linear wC

Power Noisy-OR wC

Support Noisy-OR log P(hC=1)
P(hC=0)
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Comparison with Experimental Data

Comparison of model performance with Buehner and Cheng’s
(1997) experimental data:

subjects judged P(C → E ) for hypothetical medical studies
(similar to gene expression example);

each subjects saw eight cases in which C occurred and eight
cases in which C didn’t occur;

compare predictions of all three models to human judgments.
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Comparison with Experimental Data
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Comparison with Experimental Data

P(C → E ) increases as P(e+|c−) decreases when P(e+|c+)
= 1: captured by ∆P and Support, not Power (cols 1, 6, 11,
14, 16).

P(C → E ) decreases as P(e+|c−) decreases (sometimes):
captured by Power and Support, not ∆P (cols 6-10, 14-15).

P(C → E ) decreases as P(e+|c−) decreases when ∆P = 0:
captured only by Causal Support (cols 1-5).

Non-monotonic effect: captured only by Causal Support (cols
11-13).

Overall, Causal Support has highest correlation with human data
for this and other experimental data.
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Sample Size Effect

Left: p(wC |X ). Right: Causal Support.

More data ⇒ more certainty in non-zero value of wC .
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Non-monotonic Effect

Top: E occurs with C in all cases where it can ⇒ high certainty in
high value of wC .

Bottom: E never occurs without C ⇒ lower value of wC , but high
certainty in non-zero value.

Middle: Neither extreme ⇒ most probable value of wC is high, but
lower certainty in non-zero value.
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Discussion: results

Causal Support correlates better with human data than
previous models in a range of experiments.

Captures several trends other models do not:

effects when ∆P = 0;
non-monotonic effects;
sample size effects.

Predictions stem from the assumption that humans are
learning causal structure rather than estimating its strength.

Also able to draw inferences based on very few observations
(this was tested in subsequent experiments).
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Discussion: methods

Causal Support model uses Bayesian inference to compare
probabilities of different Bayes net structures.

Previous models ask: what is the best (maximum-likelihood)
estimate of wC?
Estimates further from zero ⇒ greater P(C → E )

Causal Support asks: what is the most probable causal
structure?
More mass of wC away from zero ⇒ greater P(C → E )
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Summary

Two standard models of causal inference exist:

∆P: prob. of positive cause minus prob. of negative cause;
causal power: ∆P normalized by one minus probability of
negative cause;

these models can be analyzed as Bayes nets with linear
parameterization and noisy-OR parameterization;

but: more plausible to assume that the structure of the Bayes
net is also learned;

the causal support model achieves this by using Bayesian
inference over the structure of the net;

it accounts for patterns in the experimental data that other
models fail to capture.
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