Cognitive Modeling Lecture 8: Models of Syntactic Processing

Sharon Goldwater

School of Informatics University of Edinburgh sgwater@inf.ed.ac.uk

February 4, 2010

• • • • • • • • • • • • •

3

-

- Incrementality and Garden Paths
 - Incrementality
 - Garden Paths
 - Dimensions of Parsing

2 Bottom-Up Parser

- Parallel Parsing
- Representations
- Building the Chart
- Properties
- 3 Left Corner Parser
 - Left Corner Chart
 - Serial Parsing
 - Operators
 - Properties

Reading: Cooper (2002: Ch. 7).

< 17 ▶

- < ∃ >

Incrementality

Parsing: extracting syntactic structure from a string; prerequisite for assigning a meaning to the string.

The sentence processor builds structures *incrementally* (word by word) as the input comes in (Tanenhaus et al. 1995).

This can lead to *local ambiguity*.

Example:

- (1) The athlete realized his potential ...
 - a. ... at the competition.
 - b. ... would make him a world-class sprinter.

Incrementality Garden Paths Dimensions of Parsing

Garden Paths

- *Early commitment:* when it reaches *potential*, the processor has to decide which structure to build.
- If the parser makes the wrong choice (e.g., NP reading for sentence (1-b)) it needs to backtrack and revise the structure.
- A *garden path* occurs, which typically results in longer reading times (and reverse eye-movements).
- Some garden paths are so strong that they parser fails to recover from them.

Incrementality Garden Paths Dimensions of Parsing

Garden Paths

More examples of garden paths:

- (2) a. I convinced her children are noisy.
 - b. Until the police arrest the drug dealers controlled the street.
 - c. The old man the boat.
 - d. We painted the wall with cracks.
 - e. Fat people eat accumulates.
 - f. The cotton clothing is usually made of grows in Mississippi.
 - g. The prime number few.

A (1) > A (1) > A

Dimensions of Parsing

In addition to incrementality, a number of properties are important when designing a model of the HPSM:

- **Directionality:** the parser can process sentence bottom-up (from the words up) or top-down (from the phrase markers down). *Evidence that the HPSM combines both strategies.*
- **Parallelism:** a serial parser maintains only one structure at a time; a parallel parser pursues all possible structures. *Controversial issue; evidence for both serialism and limited parallelism.*
- **Interactivity:** the parser can be encapsulated (only access to syntactic information) or interactive (access to semantic information, context). *Evidence for limited interactivity.*

Parallel Parsing Representations Building the Chart Properties

A Bottom-Up Parallel Parser

The parser constructs a *chart*, a compact representation of all the analyses of a sentence.

Goal: find an S edge that spans the whole sentence. Example:

Parallel Parsing Representations Building the Chart Properties

A Bottom-Up Parallel Parser

Architecture of a simple parser that constructs the chart bottom-up:

Parallel Parsing Representations Building the Chart Properties

Chart, Lexicon, Grammar Rules

- Chart edges are represented as predicates of the form: edge(LeftVertex,RightVertex,Content,Level)
 - LeftVertex and RightVertex are vertex indices
 - Content is the content of the edge (e.g., word(cat))
 - Level is formatting information (not discussed here)
- Examples for items in the lexicon:

category(the,det)
category(kittens,cn)

• Examples for grammar rules:

```
rule(s,[np,vp])
rule(np,[pn])
```

A (1) > A (1) > A

Parallel Parsing Representations Building the Chart Properties

Input/Output Process

Rule 1: Add a word to the first position of the chart:

TRIGGER word(W) IF not edge(_,_,_) is in **Chart** THEN add edge(0,1,word(W),0) to **Chart**

Rule 2: Add a word to the next position of the chart:

TRIGGER word(W)
IF edge(N0,N1,word(W1),Y) is in Chart
 not edge(N1,N2,word(W2),Y) is in Chart
 N2 is N1 + 1
THEN add edge(N1,N2,word(W),Y) to Chart

• • • • • • • • • • • • •

Parallel Parsing Representations Building the Chart Properties

Elaborate Chart Process

Rule 1: Lexical look-up:

IF edge(N0,N1,word(W),L1) is in Chart
 category(W,C) is in Lexicon
 L is L1 + 1
THEN add edge(N0,N1,cat(C),L) to Chart

Rule 2: Apply unary grammar rules:

IF edge(N0,N1,cat(C1),L1) is in Chart
rule(C,[C1]) is in Grammar Rules
L is L1 + 1
THEN add edge(N0,N1,cat(C),L) to Chart

A (1) > A (1) > A

Parallel Parsing Representations Building the Chart Properties

Elaborate Chart Process

Rule 3: Apply binary grammar rules:

IF edge(N0,N1,cat(C1),L1) is in Chart edge(N1,N2,cat(C2),L2) is in Chart rule(C,[C1,C2]) is in Grammar Rules L is max(L1,L2) + 1 THEN add edge(N0,N2,cat(C),L) to Chart

Similar rules for grammar rules with more than two categories.

Parallel Parsing Representations Building the Chart Properties

Properties of the Model

Simple, but complete chart parser with the following properties:

- **bottom-up:** parsing is driven by the addition of words to the chart; chart is expended upwards from lexical to phrasal categories;
- **limited incrementality:** when a new word appears, all possible edges are added to the chart; then the system quiesces and waits for the next word;
- **parallelism:** all chart edges are added at the same time (default Cogent behavior); multiple analyses are pursued.

Left Corner Chart Serial Parsing Operators Properties

Left Corner Parsing

Bottom-up parsing processes each word as it appears, but may have unconnected structure. *Left corner parsing* is more cognitively plausible: each word is integrated into the structure as it appears.

- The chart of a left-corner parser contains *active edges*: incomplete constituents that represent predictions about what will come next.
 - Ex: NP/CN is a constituent that lacks a CN in order to become an NP.
- For a completed edge Y and a grammar rule $X \to Y Z$, introduce the active edge X/Z into the chart, where Y and X/Z span the same part of the string.

Left Corner Chart Serial Parsing Operators Properties

Example of a Left Corner Chart

Left Corner Chart Serial Parsing Operators Properties

Serial Parsing

If parsing was fully parallel, all analyses of a sentence would be equally available; there would be no garden paths.

In the literature, two types of models have been assumed:

- *ranked parallel:* multiple structures are pursued in parallel; they are ranked in order of preferences; garden paths occur if a low-ranked structure turns out to be correct;
- *serial:* only one structure is pursued; if it turns out to be incorrect, then a garden path occurs.

< ロ > < 同 > < 三 > < 三

Left Corner Chart Serial Parsing Operators Properties

Serial Parsing

Serial left-corner parser with backtracking:

- At each point of ambiguity, the parser has to chose one structure;
- if the structure turns out to be incorrect; the parser has to backtrack;
- at the last point of ambiguity, the incorrect structure is disassembled, and another alternative is pursued instead.

A (1) > A (2) > A

A Serial Model of Left Corner Parsing

Computational requirements:

- **operator selection:** each stage of processing, the parser has to select what to do: elaborate the current structure, read the next word, backtrack;
- **dept-first search:** pursue a structure as far as possible before alternatives are considered; requires inhibition of some edges in the chart;
- **backtracking:** previous states of the parser must be recoverable if backtracking occurs; requires removing edges from the chart.

Left Corner Chart Serial Parsing Operators Properties

A Serial Model of Left Corner Parsing

Basic architecture:

Left Corner Chart Serial Parsing Operators Properties

Propose Operators Process

This process can propose the following operators:

- reading the next word: add_word;
- lexical lookup: add_edge;
- project up from completed categories to parent categories (i.e., create active edge): add_edge;
- merge active edge with following edge (i.e., create passive edge): add_edge.

For details see Cooper (2002: p. 307).

• • • • • • • • • • • • •

Apply Operator Process

Rule 1: Select operator with the highest evaluation:

- IF operator(Operator,value(Score)) is in Operators
 not operator(AnyOp,selected) is in Operators
 not operator(OtherOp,value(OtherScore)) is in Operators
 OtherScore is greater than Score
 THEN delete operator(Operator,value(Score)) from Operators
 add operator(Operator,selected) to Operators
- Rule 2: Apply the selected operator, remove all others:

IF operator(Operator, selected) is in Operators
THEN delete all operator(_,_) from Operators
add operator(Operator, apply) to Operators

Apply Operator Process

Rule 3: Push unselected operators onto the stack (note: this rules fires in parallel with Rule 2):

IF operator(Operator,selected) is in Operators
 Ops is the list of all operator(O,value(V)) such that
 operator(O,value(V)) is in Operators
 V is greater than 0
 Ops is distinct from []
 get_context(Context)
THEN send push(Choices(Context,Ops)) to Choice Points

Rule 4: Remove applied operators:

IF operator(Operator,apply) is in Operators
THEN delete operator(Operator,apply) from Operators

Apply Operator Process

Rule 5: Add a word to the next position in the chart:

IF operator(add_word(W,apply)) is in Operators
 get_word_position_parameters(N0,N1)
 get_context(TS)

THEN add edge(N0,N1,word(W),W,O,TS) to Chart

Rule 6: Add an edge of the specified type to the chart

- IF operator(add_edge(N0,N1,C,S,L),apply) is in Operators
 get_context(TS)
 THEN the height (N0,N1,C,S,L), apply) is in Operators
- THEN add edge(NO,N1,cat(C),S,L,TS) to Chart

Also required: rules for backtracking (Cooper 2002: p. 307).

Properties of the Model

Properties of the left corner model:

- this model will parse garden path sentences such as *the horse* raced past the barn fell;
- extensive backtracking will occur for such sentences; only possible if the stack size of the choice point stack is sufficient;

Potential problems:

- backtracking requires that parse failure is detected; requires that the parser knows where the sentence boundaries are;
- operator evaluations are fixed; context or experience is not taken into account; no attempt to minimize backtracking.

Left Corner Chart Serial Parsing Operators Properties

Summary

- The human parser builds syntactic structure in response to strings of words;
- parsing models have to capture the incrementality of human parsing and account for ambiguity resolution (garden paths);
- parsing models can be implemented in Cogent using a chart (representing partial syntactic structure);
- left-corner parsing models achieves full incrementality;
- employs operator selection to model serial parsing and backtracking.

Left Corner Chart Serial Parsing Operators Properties

References

- Cooper, Richard P. 2002. *Modelling High-Level Cognitive Processes*. Lawrence Erlbaum Associates, Mahwah, NJ.
- Tanenhaus, Michael K., Michael J. Spivey-Knowlton, Kathleen M. Eberhard, and Julie C. Sedivy. 1995. Integration of visual and linguistic information in spoken language comprehension. *Science* 268:1632–1634.

3

イロト イポト イヨト イヨト