
1

CL1 23:
Getting it right and

getting it wrnog

Monday 13/11/2006

Introduction
• Bugs

– Definition
– Examples

• Algorithms
– Foundation of computer programs
– All applications are programs

• Software design
– Minimising the impact of bugs
– Minimising human error!

Ariane 501

A
cautionary

tale

Bugs: Ariane 5 flight 501
• Cost

– $500 million of satellites on board
• The bug

– “Type conversion error” (Jargon!)
– A 64-bit number was converted to a

16-bit number
– The value of the horizontal position was lost
– Ariane self-destructs correctly

• The error
– Code not meant for that flight?

A happy F-16 Well, almost …

In simulation, software inverted aircraft as it crossed the equator

2

Less dramatic but..

• On August 28, 1993, 2 a.m. clocks in
some PCs in Israel suddenly lost an hour.

• On October 24, 1993, at 2 a.m. some PCs
in the UK did not lose an hour.
Unfortunately everyone else was turning
back their clocks that morning.

Computer Bug

• Unwanted property of program code or
hardware

• Especially when it causes a malfunction
• Bugs are common

– “In Windows 98 Microsoft supposedly fixed
3000 bugs.” PC Computing, Sept. 1998

– Bugs can be unwanted security holes

First Bug?
• Moth found in the Mark II computer by Admiral

Grace Hopper in 1947

Remember..?

• Ariane: Programme was doing the right
thing in the wrong rocket – error in
requirement

• Summertime: Programme was correctly
doing the wrong thing – error in
specification

• F-16, Mariner: Programme(r) made a
mistake – error in implementation

Software design process

• Requirements: statement of the problem
– Validation (fails: Ariane 501)

• Specification: statement of what to do
– Verification (fails: date error)

• Implementation: doing it
– Design, Testing (fails:f16 (nearly))

• Note: the F-16 bug was the only one
caught

Early bug: IEFBR14
• IEFBR14: one line of code for an IBM

mainframe computer used in 70’s
• Instruction of code:

– “Do nothing” (i.e. wait for a short time)
• Contained a bug!

– Forgot to prepare the memory for the next
instruction

– Subsequent instructions went wrong
• Fixed code increased code size to 4 bytes!

3

A few other causes
• Evolutionary bugs (requirement drift)

– Ariane, Patriot missile

• Human Interactions
– USS Yorktown (data entry error), HMS

Sheffield (operational errors)

• Communication
– Mars Orbiter: mixed imperial and Metric

units

• Most major failures have multiple
causes

Bugs: Patriot missile
• Error calculating the time since the

computer booted
– Binary representation of 0.1 seconds limited

to 24 bits
• Once activated, navigation system drifts
• In the Gulf War 1991

– Caused a patriot missile to fail to intercept a
Scud missile

– 28 killed, 100 injured

Computer programs
• Computers are excellent at following

instructions
– Identify how to solve the problem
– Use a computer!

• Major difficulties are
– Expressing problems that can be solved

using efficient algorithms
– Giving the computer the correct instructions
– Making the program user-friendly

Bugs in programs
• Memory leak

– Forget to release memory after it has been used
• Other easy/common mistakes

– Variable not set to the right initial value
– Divide by zero: answer is infinity!
– Get a number wrong by 1
– Loops that never end

• Spelling mistakes
– Usually prevented by the code not compiling
– Not always! (Mariner 1)

Mariner 1:

• Failed “because the line
– DO 10 I=1.100 should have

read
– DO 10 I=1,100”

• There’s rather more to it than
that..

Fault tolerant systems
• Creating fault free systems

– Difficult and time-consuming
• Fault tolerant systems operate successfully

despite faults
• Hardware: back-up systems
• Software:

– Keep multiple copies of (back-up) the data
– Identify and monitor critical variables
– Checkpointing: reset system to a stored set of values

4

Example: Aircraft failure rates
• Fatal accident rate

1 death in 1,000,000 flying hours
• System causes 10% of accidents
• 100 critical systems in an aircraft
• Rate of failure

1,000,000 hours × 100 systems / 10%
= 1 fatal fault in 1,000,000,000 system flying

hours
Good enough?

Software design: Waterfall model

Analyse the problem
→ Design solution architecture

→ Design solution details
→ Write program code

→ Test code
→ Maintain code

• Problems:
– Original analysis is difficult
– Problems identified at the end can be expensive to fix

Iterative design model
• At each stage

– Design → Prototype → Evaluate → Redesign
– All stages developed concurrently, with feedback

between all stages
• Advantages

– User-defined from the start
– Performance can be measured much earlier

• Problems
– Time consuming
– Requires good management

Defensive programming

• Anticipate possible circumstances
• Trust nothing

– Check what you are being told e.g.
• angles between 0 and 359º
• day-of month is between 1 and 31

– Check what you are telling others
– Sanity checks on actions taken

• Fail in predictable manner if fault occurs

• Layered protection including hardware ‘back-
stops’

Beta testing
• Refers to the 2nd phase of software testing

– Sample of the intended audience tests the product
– It works for the programmer, does it work for the

user?
– Provides a “preview” of software: it’s free! Buggy!

• Emerging software: look for “Beta” versions
– At Google http://labs.google.com/
– At MSN now: http://beta.search.msn.com/
– Dedicated Web site www.betanews.com/

• [Beta is the second letter in the Greek alphabet. “Alpha” testing refers to the
first phase: checking it works for the programmer]

In the news …

• Cost of Child Support Agency’s new
computer system:
– £456 million
(Scottish parliament building: £431 million)

• Unable to cope with the work load
– Backlog of 30,000 cases per month

• How could this happen?
• Source: http://news.bbc.co.uk/1/hi/uk_politics/4020399.stm

5

IT systems development
• Difficult initial problem analysis

– IT systems supplement existing practice
– Easy to be over-ambitious
– Goals can change
– Practical difficulty of establishing user’s goals

• Changing technology
– Technology is quickly obsolete
– Limited experience with new technology

• Complexity:
– Large programs use ~100,000 lines of code
– High staff turnover

Reporting problems

• Relevant details:
– Username
– Date, Time
– Location
– Computing environment (Operating system…)

• The fault:
– Observations
– And separately, any inferences

Key Points

• Computers solve problems using
algorithms

• Bugs result from human-computer
interactions

• Techniques exist to try and control the
effects of bugs

