
1

A Bugs Life

Computer Literacy 1 Lecture 16
27/10/2008

Topics
 Bugs

 Definition
 Examples

 Algorithms
 Foundation of computer programs
 All applications are programs

 Software design
 Minimising the impact of bugs
 Minimising human error

Computer bug
 Unwanted property of program code or

hardware
 Especially when it causes a malfunction
 Bugs are common

 In Windows 98 Microsoft supposedly fixed 3000
bugs

 In 2000 a leaked memo from Microsoft revealed
that Windows 2000 was released with 20,000
bugs

 Bugs can be unwanted security holes

Early bug: IEFBR14
 IEFBR14: One line of code for an IBM

mainframe computer used in the 70’s
 Instruction of code:
 “Do nothing” (e.g. wait for a short time)
 Contained a bug!

 Forgot to prepare the memory for the next
instruction

 Subsequent instructions go wrong

2

Bugs: Patriot missile
 Error calculating time since the computer

booted
 Binary representation of 0.1 seconds limited

to 24 bits
 Once activated, navigation system drifts
 Gulf War in 1991
 Caused a patriot missile to fail to intercept a

Scud missile
 28 people were killed and 100 injured

Computer programs

 Computers are excellent at following
instructions
 Follow your command literally
 Can solve problems quickly

 Major difficulties are
 Expressing problems that can be solved by

efficient algorithms
 Giving the computer the correct instructions
 Making the program user friendly

Bugs in programs
 Memory leak

 Forget to release memory after it had been used (e.g.
IEFBR14)

 Other easy/common mistakes
 Variable not set to the right initial value
 Loops that never ends

 Spelling mistakes
 Usually prevented by the code not compiling
 Not always (Mariner 1)

Bugs: Ariane 5 flight 501
 Cost

 $500 million of satellites on board
 The bug

 “Type conversion error”
 A 64-bit number was converted in a 16-bit number
 The value of horizontal position was lost
 Ariane self-destructs correctly

 The error
 Code not meant for that flight?

3

Ariane 5 Flight 501

 http://www.youtube.com/watch?v=IONcgYzV
Flg

 Year was 1996

Software bug halts F-22 Flight

 On February 11, 2007 twelve raptors flying
from Hawaii to Japan were forced to turn
back because of a software glitch

 Their computers crashed when they crossed
the international date line!

 They had to turn around an follow their
tankers by visual contact back to Hawaii

Less dramatic but happened

 On August 28, 1993, 2a.m. clocks in some
PCs in Israel are suddenly loosing an hour

 On October 24, 1993, at 2a.m. some PCs in
the UK don’t turn back their clocks like they
were supposed to

Mariner 1

 Mariner 1 should have been an spacecraft on
a Venus flyby mission

 Instead a security officer called its destructive
abort 293 seconds after its launch

 It’s claimed that the bug was a single sign in
the code that was wrong:

DO 17 I = 1.100 should have been
DO 17 I = 1,100

4

Remember

 Ariane: Program was doing the right thing in
the wrong rocket - error in requirement

 Change from summer to winter-time:
Program was correctly doing the wrong thing
- error in specification

 F-22, Mariner: Programme(r) made a
mistake - error in implementation

Software design process

 Requirements: statement of the problem
 Validation

 Specification: statement of what to do
 Verification

 Implementation: doing it
 Design, Testing

When it all goes wrong

 Fault - an error lurking in the program

 Error - fault is triggered

 Failure - program takes inapproriate action
as a result

Fault tolerant systems

 Creating fault free systems
 Difficult and time-consuming

 Fault tolerant systems operate successfully
despite faults

 Software:
 Keep multiple copies of (back-up) the data
 Identify and monitor critical variables
 Checkpointing: reset system to a stored set of

values

5

Software design: Waterfall
model

 Analyse the problem:
 Design solution architecture
 Design solution details
 Write program code
 Test code
 Maintain code

Iterative design model
 At each stage

 Design Prototype Evaluate Redesign
 All stages developed concurrently, with feedback between

all stages
 Advantages

 User-defined from start
 Performance can be measured much earlier

 Problems
 Time consuming
 Requires good management

Beta testing

 Refers to 2nd phase of software testing
 Sample of intended audience test the product
 It works for the programmer, does it work for the

user?
 Provides a “preview” of software

 Dedicated website: www.betanews.com

IT systems development
 Difficult initial problem analysis

 IT systems supplement existing practice
 Easy to be over-ambitious
 Goals can change
 Practical difficulty of establishing user’s goals

 Changing technology
 Technology is quickly obsolete
 Limited experience with new technology

 Complexity
 Large programs use ~100,000 of code
 High staff turnover

6

During the implementation
 Monitoring calls with business
 Schedule of events checking
 Formal checkpoints
 Business checkout
 Incident management. Formal control of any

problems
 Go / No Go decision
 Ensure all in place for staff to use

Post implementation
 Analysis of any problem

 What was their problem?
 What was done to resolve them?
 Are any further fixes needed?

 Monitoring of ongoing system performance
 Are the transactions being processed correctly?

 How is the business getting on with the system?
 Has it been well received?
 Is everyone able to use it easily?
 Any further action needed?

London Ambulance Fiasco
1992
 The London Ambulance (LAS) Computer Aided

Dispatch failed dramatically on October 26 1992
shortly after it was introduced
 The system could not cope with the load placed on it by

normal use
 The response to emergency calls was several hours
 Ambulance communications failed and ambulances were

lost from the system

LAS Fiasco

 A series of errors were made in the
procurement, design, implementation, and
introduction of the system.
 There appears to have been NO backup

procedure at all
 Design of user interface was inadequate
 No consideration was given to system overload

7

Key points

 Bugs result from human-computer
interactions

 There are many causes
 Techniques exist to try and control the effects

of bugs
 Changes need planning

