UG3 COMPUTABILITY AND INTRACTABILITY (2012-2013)
EXERCISE SHEET 1: SAMPLE SOLUTIONS

Submission date: Friday 19 October.

. (a) The function f is computable. Given n we can construct P, and run it on n.
If we get a result we just add 1 and return that as the answer.

Guidelines: 1 mark for knowing that f is computable. 2 marks for the justification.

(b) Suppose that g extends f, is computable and total. Then there is a program
P, that computes g. But now we have a contradiction since by definition the value
of g(m) is P, (m) + 1, i.e., g(m) + 1. Thus g cannot be computable and total.
Guidelines: Minor variation on bookwork (proof that we cannot have a general
system of computation in which all programs halt on all inputs). 2 marks for
doing something reasonable with self reference.

(c) Just define

[f(n), if f is defined on n,
g(n) = {O, otherwise.

This is clearly a total function that extends f. It cannot be computable by the
preceding part.

Guidelines: 2 marks for the definition of g, 2 marks for the explanation that it
cannot be computable. The question requires students to use the preceding two
parts so no marks if they don’t.

. (a) Here is one possible machine:

Given an input string $BQ@ where B is a binary string the machine
halts with $BO@B on the tape (and accepts the string).

=40, 1, A, B, $, @, b}

{(right, 0, zero, A, R), (right, 1, one, B, R),
(right, @, halt, @, L), (right, $, right, $, R),
(zero, b, left, 0, L), (zero, ?, zero, 7, R),
(one, b, left, 1, L), (one, 7, one, 7, R),
(left, A, right, 0, R), (left, B, right, 1, R),
(left, 7, left, 7, L)}

Q = {left, right, zero, one, halt}
I = right

F = halt

S =40, 1, $, o}

G

D

[8 marks]

[4 marks)]

[4 marks]

Guidelines: The traces in (b) and (c) should help with checking correctness. Give
up to 3 marks for solutions that are correct modulo some minor detail. Give
full marks for a solution that is correct, unless it is far more complicated than
necessary — then give just 4 marks.

(b) Guidelines: All or none.

(¢) Guidelines: All or none.

. (a) We use a three tape machine. Our first action is to copy the input string on
the second tape. On the third tape we list the strings in ¥* one at a time. After
each string is generated we copy the saved input string on the second tape to the
first tape and then append the string on the third tape (we do the usual sensible
thing about marking the first square of the tapes so that we don’t fall off). After
this we return to the first (non marked) square on the first tape and simulate the
machine that accepts L. This will of course halt. If it accepts we accept otherwise
we start the cycle all over.

Guidelines: Award 6 or 5 marks for a solution that is correct but misses out a
detail or two: deduct 1 mark if they fail to mention that the very first squares
must be made recognizable, deduct 2 marks if they fail to save the input string in
some way. 3 marks for a solution that shows that they are not completely clueless.

(b) The result is still true. We modify the construction above by, e.g., keeping
a counter n. At each phase we try the computation of the preceding part for all
strings of length at most n and for each attempt we compute for at most n steps
(i.e., a version of dovetailing).

Guidelines: Be generous here: the key point is to realize that the result is still
true (1 mark) and that we must try the possibilities with some form of (fake)
parallelism.

Rahul Santhanam, Thursday 25 October

[6 marks)
[2 marks)|

[3 marks)|

[7 marks)

[4 marks]

