The COLOURABILITY problem.

INSTANCE: An undirected graph G, and an integer k.

QUESTION: Is there an assignment of k colours to the vertices of G such that no two adjacent vertices receive the same colour?

THEOREM COLOURABILITY is NP-complete.

Reduction from SAT to COLOURABILITY.

Given: ϕ , instance of SAT, i.e., a Boolean formula in CNF.

Require: Graph G and integer k s.t.

 ϕ is satisfiable \iff G is k-colourable.

Formally: Let

$$x_1, x_2, \ldots, x_n$$
: variables in ϕ ,
 C_1, C_2, \ldots, C_r : clauses of ϕ .

Then

$$V = \{v_0, \dots, v_n\} \cup \{x_1, \dots, x_n\} \cup \{\overline{x}_1, \dots, \overline{x}_n\} \\ \cup \{C_1, \dots, C_r\}, \\ E = \{\{v_i, x_j\}, \{v_i, \overline{x}_j\} \mid 1 \le i, j \le n \text{ and } i \ne j\} \\ \cup \{\{v_i, v_j\} \mid 0 \le i < j \le n\} \\ \cup \{\{v_0, C_k\} \mid 1 \le k \le r\} \\ \cup \{\{x_i, \overline{x}_i\} \mid 1 \le i \le n\} \\ \cup \{\{x_i, C_k\} \mid x_i \text{ is not a literal in clause } C_k\} \\ \cup \{\{\overline{x}_i, C_k\} \mid \neg x_i \text{ is not a literal in clause } C_k\}, \\ k = n + 1.$$

The Integer Programming problem, INTPROG.

INSTANCE: An integer $m \times n$ matrix A, and an integer m-vector **b**. QUESTION: Does there exist an integer n-vector **x** such that $A\mathbf{x} \leq \mathbf{b}$?

THEOREM INTPROG is NP-complete.

Note: INTPROG is in NP but tricky to show!

NP-hardness: Reduction from SAT to INTPROG.

Formally: Let

$$x_1, x_2, \ldots, x_n$$
: variables in ϕ ,
 C_1, C_2, \ldots, C_r : clauses of ϕ .

Then for $1 \leq i \leq r$ and $1 \leq j \leq n$ define

 $\alpha_{ij} = \begin{cases} 1, & \text{if } x_j \text{ occurs in the clause } C_i; \\ 0, & \text{otherwise,} \end{cases}$

and

 $\beta_{ij} = \begin{cases} 1, & \text{if } \neg x_j \text{ occurs in the clause } C_i; \\ 0, & \text{otherwise.} \end{cases}$

Let z_1, z_2, \ldots, z_n be integer variables and consider linear inequalities:

$$egin{aligned} &z_j \geq 0, & ext{ for } 1 \leq j \leq n; \ &z_j \leq 1, & ext{ for } 1 \leq j \leq n; \ &\sum_{j=1}^n (lpha_{ij} z_j + eta_{ij} (1-z_j)) \geq 1, & ext{ for } 1 \leq i \leq r. \end{aligned}$$

133

The SUBSETSUM problem.

INSTANCE: A finite set X, a positive integer 'size' s(x) for each $x \in X$, and an integer 'goal' b. QUESTION: Is there a subset $A \subseteq X$ such that $\sum_{x \in A} s(x) = b$?

THEOREM SUBSETSUM is NP-complete.

Reduction from INDSET.

Given: Undirected graph G = (V, E) and positive integer k.

Require: finite set X, positive integer 'size' s(x) for each $x \in X$, and integer 'goal' b s.t.

G has an independent set of size k \iff there is subset $A \subseteq X$ s.t. $\sum_{x \in A} s(x) = b$.

Formally: Let

$$\{v_0, \dots, v_{n-1}\}: \text{ vertex set } V \text{ of } G, \\ \{e_0, \dots, e_{m-1}\}: \text{ edge set } E \text{ of } G.$$

Define

$$X = V \cup E,$$

$$s(e_i) = 10^i, \text{ for } 0 \le i \le m - 1;,$$

$$s(v_i) = 10^m + \sum_{e_j \ni v_i} 10^j, \text{ for } 0 \le i \le n - 1,$$

$$b = k \times 10^m + 10^{m-1} + 10^{m-2} + \dots + 10^2$$

$$+ 10 + 1.$$

THEOREM If $P \neq NP$ then there are languages in NP that are not in P and are not NP-complete.

GRAPH ISOMORPHISM

INSTANCE: Two undirected graphs G = (V, E)and G' = (V', E'). QUESTION: Are the graphs isomorphic?

Know: GRAPH ISOMORPHISM is in NP (obvious).

Don't Know: If it is NP-complete or in P.

Curious fact: Have *very* few natural problems of such unknown status (hence possibly in NP but not in P.)