More on reductions; nondeterministic computation

Polynomial time reductions enable us to compare tractability of languages.

THEOREM Suppose $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ are languages. If L_1 is polynomial-time reducible to L_2 , and L_2 is in the class P, then L_1 is also in the class P.

Notes:

- 1. If L_2 recognized in time n^d and f computable in time n^e then L_1 recognized in time $n^{de} + 2n^e$; this might well be the best we can do.
- 2. P is closed under reductions.
- 3. If $L_1 \leq_{\mathsf{P}} L_2$ and $L_1 \notin P$ then $L_2 \notin P$.

Naïve search and P:

EULERIAN CYCLES

INSTANCE: A finite undirected graph G.

QUESTION: Does G have an Eulerian cycle, i.e., can we start at a vertex v visit every edge exactly once and return to v?

Algorithm: Try all possible permutations of the edges and for each permutation test it to see if it does the job.

Note: Testing phase is easy.

Real Algorithm (Euler): Answer is 'yes' if and only if graph is connected and each vertex has an even number of edges attached.

Further Examples:

PERFECT MATCHINGS

INSTANCE: Bipartite graph B with equal numbers of vertices in each partition.

QUESTION: Does *B* have a perfect matching?

Efficient Algorithm: Based on Flow Networks.

Contrast: SAT and CLIQUE.

• Proposed solutions easy to check.

• Nobody knows how to get around naïve search.

Nondeterministic Turing machines: Same as ordinary TMs but now each state-symbol pair can have more than one instruction.

• δ is a relation rather than a partial function.

• At each step, machine chooses nondeterministically a next step (if any).

• Machine accepts input x if and only if there is at least one computation leading to final state.

Example: $L \subset \{a, b\}^*$ all strings that contain *aaa* or *bbb* as a substring.

 $\begin{array}{rl} (q_0, a, q_0, a, R) & (q_0, b, q_0, b, R) & (q_0, a, q_1, a, R) \\ (q_0, b, q_2, b, R) & (q_1, a, q_3, a, R) & (q_3, a, q_f, a, R) \\ (q_2, b, q_5, b, R) & (q_5, b, q_f, b, R) & (q_3, b, q_0, b, L) \end{array}$

Simulating NTMs by DTMs:

THEOREM If a language L is accepted by a nondeterministic Turing machine M, then Lis accepted by a deterministic Turing machine \widehat{M} .

input:	x
chaica caquanca:	
choice sequence.	
simulation of M :	

Choice sequence:

• Number all nondeterministic choices up to a given depth.

• Choose moves specified in the sequence.

The language class NP:

M a NTM, input alphabet Σ .

M is of time complexity T(n) means:

• M makes at most T(n) transitions before halting, for all inputs $x \in \Sigma^n$.

M is *polynomial time* means

• it is of time complexity p(n) for some polynomial p.

NP is class of all languages accepted by polynomialtime NTMs Example languages in NP:

- 1. SAT, CLIQUE.
- 2. EULERIAN CYCLES, PERFECT MATCHINGS.
- 3. Every language from P.

Open problem: Have

 $\mathsf{P}\subseteq\mathsf{NP}.$

Is this a strict containment?

Look ahead: We will see that if $L \in NP$ then $L \leq_P SAT$.

• Thus $CLIQUE \leq_P SAT$ so $CLIQUE \in P$ if and only if $SAT \in P$.

• similar situation holds for many hundreds of natural problems.