Computing against the clock

Classification of languages: so far have:

- Recursive (decidable),
- Non-recursive (undecidable),
- r.e.,
- not r.e.

Now focus on recursive languages and ask about cost of solving membership problem.

Time bounded machines: M a TM with input alphabet Σ. Say that M is $T(n)$ time bounded (or of time complexity $T(n)$) if

- M halts within $T(n)$ steps on all inputs $x \in \Sigma^{n}$, i.e., all inputs of length n.

Note: $T(n)$ is just an upper bound, M could halt in fewer steps.

Say M is polynomial time if it is of time complexity $p(n)$ for some polynomial p.

Example: $M_{\text {palin }}$ time bound $\frac{1}{2}(n+1)(n+2)$.

> The class P: Consists of all languages over $\{0,1\}$ that can be recognized by some polynomial time TM.

Examples:

1. Palindromes.

2. $\{0,1\}^{*}$.
3. $\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$.

Observations about \mathbf{P} :

1. P is invariant under changes of model.
2. Languages in P regarded as tractable.
3. Languages outside P regarded as intractable.
4. Really P is an idealization, or approximation, of 'practically solvable'.
5. Even so point (1) shows P is of great interest (cf. recursive languages).
6. Forced to allow all of P unless we fix a model.
7. P helps us to make precise a question about naïve search (look at this later).

Polynomial-time reductions: L_{1}, L_{2} be Ianguages over alphabets Σ_{1} and Σ_{2}. A polynomialtime reduction from L_{1} to L_{2} is a function

$$
f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}
$$

satisfying:
(a) $x \in L_{1} \Longleftrightarrow f(x) \in L_{2}, \quad$ for all $x \in \Sigma_{1}^{*}$;
(b) there is a polynomial-time Turing machine transducer that computes f.

Same definition as a reduction but now f must be computed in polynomial time.

Say L_{1} is polynomial-time reducible to L_{2}, if there is a polynomial-time reduction from L_{1} to L_{2}. Write as:

$$
L_{1} \leq_{\mathrm{P}} L_{2} .
$$

Satisfying assignments and cliques:

- SAT, taken from propositional logic:

INSTANCE: A Boolean formula ϕ in conjunctive normal form (CNF).

Question: Is there an assignment of truth values to the variables of ϕ that makes ϕ true?

- Clique, a problem from graph theory:

INSTANCE: An undirected graph $G=(V, E)$, and an integer k.

QUESTION: Does G possess a k-clique?

Claim: SAT \leq_{P} Clique.

Given: CNF Boolean formula ϕ.

Produce: Undirected graph G and integer k s.t.

$$
\phi \text { is satisfiable } \Longleftrightarrow G \text { has a } k \text {-clique. }
$$

Must be able to build G, k in polynomial time in the size of ϕ.

The reduction: Let

$$
\begin{aligned}
\phi & =C_{1} \wedge C_{2} \wedge \cdots \wedge C_{r}, \\
C_{i} & =\left(\alpha_{i 1} \vee \alpha_{i 2} \vee \cdots \vee \alpha_{i, s_{i}}\right)
\end{aligned}
$$

each $\alpha_{i j}$ is a literal.

A pair of literals is complementary if it consists of the negated and un-negated forms of the same variable, e.g., x and $\neg x$.

Reduction maps ϕ to graph $G=(V, E)$ and integer k :

$$
\begin{aligned}
V & =\left\{\alpha_{i j} \mid 1 \leq i \leq r \text { and } 1 \leq j \leq s_{i}\right\}, \\
E & =\left\{\left\{\alpha_{i j}, \alpha_{h k}\right\} \mid i \neq h, \text { and the pair } \alpha_{i j}, \alpha_{h k}\right. \\
& \text { is not complementary }\}, \\
k & =r .
\end{aligned}
$$

