The fall-out: part 2

$L_{\text {halt }}$ is not recursive but it is r.e.

Consider
$L_{\text {loop }}=\{\langle M\rangle \$ x \mid M$ does not halt on input $x\}$,
i.e., complement of $L_{\text {halt }}$ except for badly formed strings.

Question: Can this be recursive or r.e.?

Clearly: Can't be recursive.

THEOREM The complement of a recursive language is recursive.

THEOREM A language L is recursive if and only if both L and \bar{L} are recursively enumerable.

COROLLARY The language $L_{\text {loop }}$ is not recursively enumerable.

The uniform halting problem (reprise):
$L_{\text {uhalt }}=\left\{\langle M\rangle \mid M\right.$ halts on all inputs $\left.x \in\{0,1\}^{*}\right\}$.
We show this is not r.e.

- $\overline{L_{\text {uhalt }}}$ not r.e. either so need a subtler approach.

Reducing $L_{\text {loop }}$ to $L_{\text {uhalt }}$

- We have: $\langle M\rangle \$ x$ - instance of $L_{\text {loop }}$.
- We want: $\left\langle M_{x}\right\rangle$ - instance of $L_{\text {uhalt }}$.

Must satisfy:
M does not halt on $x \Longleftrightarrow M_{x}$ halts on all inputs.

Key idea: M_{x} treats its input as a time bound for M when run with input x.

First build two tape TM M_{x}^{\prime} with behaviour:

Given input $w \in\{0,1\}$

1. Mark leftmost squares;
2. Write x on tape 2 ;
3. Interpret w as a counter;

Simulate M on x and decrement counter after each step;
4. When counter becomes 0; if simulation hasn't halted then halt else go into an infinite loop;

Proof systems for the uniform halting problem

Want: System to conduct formal proofs about the behaviour of TMs, i.e.,

- a formal language for making assertions about TMs,
- a collection of axioms and inference rules.

Make only two assumptions about this system:
(a) Language can express assertions of form 'machine M halts on all inputs', M an arbitrary binary TM.
(b) Proofs are machine checkable, i.e., there is a TM $M_{\text {check }}$ that meets the specification:

INPUT: $\langle M\rangle \$ \pi$, i.e., binary Turing machine M, and $\pi \in\{0,1\}^{*}$.

OUTPUT: 'Yes' if π encodes a valid proof of the assertion ' M halts on all inputs', 'no' otherwise.

Note: $M_{\text {check }}$ always halts.

Obvious requirements on system:

- Sound: Proofs don't lie, i.e., provable \rightarrow true.
- Complete: If M halts on all inputs then there is a proof, i.e., true \rightarrow provable.

Fact: If such a proof system exists then $L_{\text {uhalt }}$ is r.e.

Conclusion: No such system exists.

