The fall-out: part 2

 L_{halt} is not recursive but it is r.e.

Consider

 $L_{\mathsf{loop}} = \{ \langle M \rangle \$x \mid M \text{ does } not \text{ halt on input } x \},\$

i.e., complement of L_{halt} except for badly formed strings.

Question: Can this be recursive or r.e.?

Clearly: Can't be recursive.

THEOREM The complement of a recursive language is recursive.

THEOREM A language L is recursive if and only if both L and \overline{L} are recursively enumerable.

COROLLARY The language L_{loop} is *not* recursively enumerable.

The uniform halting problem (reprise):

 $L_{\text{uhalt}} = \{ \langle M \rangle \mid M \text{ halts on all inputs } x \in \{0, 1\}^* \}.$ We show this is not r.e.

• $\overline{L_{\text{uhalt}}}$ not r.e. either so need a subtler approach.

Reducing L_{loop} to L_{uhalt}

- We have: $\langle M \rangle$ \$x instance of L_{loop} .
- We want: $\langle M_x \rangle$ instance of L_{uhalt} .

Must satisfy:

M does not halt on $x \iff M_x$ halts on all inputs.

Key idea: M_x treats its input as a time bound for M when run with input x.

First build two tape TM M'_x with behaviour:

Given input $w \in \{0, 1\}$

- 1. Mark leftmost squares;
- 2. Write x on tape 2;
- Interpret w as a counter;
 Simulate M on x and decrement counter after each step;
- When counter becomes 0;
 if simulation hasn't halted then halt else go into an infinite loop;

Proof systems for the uniform halting problem

Want: System to conduct formal proofs about the behaviour of TMs, i.e.,

• a formal language for making assertions about TMs,

• a collection of axioms and inference rules.

Make only two assumptions about this system:

- (a) Language can express assertions of form
 'machine M halts on all inputs', M an ar bitrary binary TM.
- (b) Proofs are machine checkable, i.e., there is a TM M_{check} that meets the specification:
 - INPUT: $\langle M \rangle$ \$ π , i.e., binary Turing machine M, and $\pi \in \{0, 1\}^*$.
 - OUTPUT: 'Yes' if π encodes a valid proof of the assertion '*M* halts on all inputs', 'no' otherwise.
 - *Note:* M_{check} always halts.

Obvious requirements on system:

 \bullet Sound: Proofs don't lie, i.e., provable \rightarrow true.

• Complete: If M halts on all inputs then there is a proof, i.e., true \rightarrow provable.

Fact: If such a proof system exists then L_{uhalt} is r.e.

Conclusion: No such system exists.