
The fall-out: part 1

Reductions: Given languages

L1 ⊆ Σ∗
1, L2 ⊆ Σ∗

2

A reduction from L1 to L2 is a function f :

Σ∗
1 → Σ∗

2 satisfying:

(a) x ∈ L1 ⇐⇒ f(x) ∈ L2, for all x ∈ Σ∗
1;

(b) there is a Turing machine transducer that

computes f .

70

In other words: The question

‘is x ∈ L1?’

has the same answer as

‘is f(x) ∈ L2?’

Moreover we have an algorithm for transform-

ing first question to second.

Say that L1 is reducible to L2 if a reduction

from L1 to L2 exists.

71

72

THEOREM Suppose L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2
are languages. If L1 is reducible to L2, and L2

is recursive, then L1 is also recursive.

Equivalently: If L1 is not recursive then L2 is

not recursive.

Use this version to prove new things are non-

recursive starting with Lhalt.

Proof of Theorem: High level description

On input x
call M and compute f(x);
run M2 on f(x) and give its decision;

73

74

The uniform halting problem:

INSTANCE: A binary Turing machine M .

QUESTION: Does M halt on all inputs x ∈
{0, 1}∗?

Language:

Luhalt = {〈M〉 | M halts on all inputs x ∈ {0, 1}∗}.

Looks unsolvable but looks can be deceptive!

75

THEOREM The language Luhalt is not recur-
sive.

PROOF Reduction from Lhalt to Luhalt.

Lhalt ⊆ {0, 1, $},
Luhalt ⊆ {0, 1}

Only really interested in well formed strings
〈M〉$x but must deal with all.
• send every badly formed string to 0 (or any

string of odd length).

Send a well formed string 〈M〉$x to Mx de-
scribed by:

Given input w ∈ {0, 1}∗
if w 6= x then halt
else simulate M on x and do what it does

Clearly

M halts on x ⇐⇒ Mx halts on all inputs

76

Formally reduction is

y 7→
{
0, if y badly formed

〈Mx〉, if y = 〈M〉$x.
But this just sums up in symbols what we said

above!

77

Detailed construction of Mx from M and x:

Let

x = x0x1x2 · · ·xn−1, each xi ∈ {0, 1}.

(1) Add 2n new states to M :

q′0, q′1, . . . , q′n−1,

q′′1, q′′2, . . . , q′′n.

(2) Extend transition function to new states

by:

(a) Adding right-sweeping quintuples

(q′0, x0, q′1, x0, R),

(q′1, x1, q′2, x1, R),
...

(q′n−2, xn−2, q′n−1, xn−1, R),

(q′n−1, xn−1, q′′n, xn−1, R)

78

(b) Adding left-sweeping quintuples

(q′′n, b̄ , q′′n−1, b̄ , L),

(q′′n−1, xn−1, q′′n−2, xn−1, L),
...

(q′′2, x2, q′′1, x2, L),

(q′′1, x1, qI , x1, L)

Note: 〈Mx〉 easy to compute given 〈M〉 and x

(actually 〈M〉$x).

79

Non-emptiness problem for r.e. languages:

INSTANCE: A binary Turing machine M .

QUESTION: Is the language L(M) non-empty?

Language:

Lne = {〈M〉 | L(M) 6= ∅}.

80

THEOREM The language Lne is not recur-

sive.

PROOF Again reduction from Lhalt.

Given 〈M〉$x we construct a Turing machine Mx

s.t.

M halts on input x ⇐⇒ L(Mx) 6= ∅.

Can assume M never falls off left hand end of

tape. Now Mx behaves as:

Given input x
simulate M on x
if this halts then accept

Easy to deal with badly formed strings for the

reduction.

81

Number theory: a simple first-order the-

ory:

Sentences formed from the following entities,

according to ‘appropriate syntactic rules’:

(a) the constants 0 and 1;

(b) variables (denoted by lower case roman

letters);

(c) the binary arithmetic operators + and ×;

(d) the relational operators < and =;

(e) the logical connectives ∧, ∨, and ¬;

(f) the quantifiers ∃ (there exists) and ∀ (for

all).

Sentences with no free variables interpreted as

statements about N.
82

Examples:

∀x ∃y [x < y], true
∀x ∃y [x = y + y], false

Can make quite complicated assertions:

prime(x) = ∀u ∀v [(u = 1)∨(v = 1)∨¬(u×v = x)].

∀x ∃y [(x < y)∧prime(y)], infinitely many primes

(true).

∀x ∃y [(x < y) ∧ prime(y) ∧ prime(y + 1 + 1)],

infinitely many prime pairs (only a conjecture).

Lnum the set of true sentences. Gödel’s In-

completeness theorem yields

THEOREM The language Lnum is not recur-

sive.

83

