The fall-out: part 1

Reductions: Given languages
L1 €Yy, LyC35

A reduction from Lq to Lo is a function f :
> 7 — X5 satisfying:

(a) xr € L1 <= f(x) € Lo, forall x € X%;

(b) there is a Turing machine transducer that
computes f.

70

In other words: The question
isx e L7
has the same answer as
‘is f(x) € Ly?’

Moreover we have an algorithm for transform-
ing first question to second.

Say that Ly is reducible to Lo if a reduction
from Ly to Lo exists.

71

72

THEOREM Suppose L; € 37 and Ly C 35
are languages. If Ly is reducible to Lo, and L»
IS recursive, then Ly is also recursive.

Equivalently: If L is not recursive then L5 is
not recursive.

Use this version to prove new things are non-
recursive starting with Lpgt.

Proof of Theorem: High level description
On input z

call M and compute f(x);
run M- on f(x) and give its decision;

73

= accept

= reject

74

T he uniform halting problem:
INSTANCE: A binary Turing machine M.

QUESTION: Does M halt on all inputs = €
{0,1}*7

Language:

Lynait = {{M) | M halts on all inputs z € {0,1}*}.

L. ooks unsolvable but looks can be deceptive!

75

THEOREM The language L 5t IS NOt recur-
sive.

PROOF Reduction from Lhalt to Luhalt-

Lhalt C {Ov 1, $}7

Luhalt C {O: 1}
Only really interested in well formed strings
(M)$x but must deal with all.
e send every badly formed string to 0 (or any
string of odd length).

Send a well formed string (M)$x to M, de-
scribed by:

Given input w € {0,1}*
if w #= x then halt
else simulate M on xz and do what it does

Clearly

M halts on x < M, halts on all inputs

76

Formally reduction is

0, if y badly formed
—>
y (Mg), ify=(M)$z.

But this just sums up in symbols what we said
above!

r

Detailed construction of M, from M and z:
Let

r = xox1TD - Tp_1,€ach x; € {0,1}.

(1) Add 2n new states to M:

/ / /
QO7Q17 <. '7Qn—17

! /! !/
ql?Q27 ey gn-

(2) Extend transition function to new states
by:

(a) Adding right-sweeping quintuples
(Q67x07qa_7x07R)7
(q/1>$17q/27371aR>7
(%/7,—27 Ln—2, ng,—]_v Ln—1, R)7

/ !/
(qn—]_a Ln—14n Tn—1, R)

78

(b) Adding left-sweeping quintuples

(7/':,757 n]_767L)7
(qn—laxn—laqx—Qawn—laL)a

(q27 Lo, Q]_a Lo, L))
(Q]_axla dr, 1, L)

Note: (M;) easy to compute given (M) and x
(actually (M)$x).

79

Non-emptiness problem for r.e. languages:
INSTANCE: A binary Turing machine M.
QUESTION: Is the language L(M) non-empty?

Language:

Lne = {(M) | L(M) # 0}.

80

THEOREM The language Lnpe iS not recur-
Sive.

PROOF Again reduction from Lpgt-

Given (M)$x we construct a Turing machine M,
s.t.

M halts on input x <= L(My) # 0.
Can assume M never falls off left hand end of

tape. Now M, behaves as:

Given input z
simulate M on x
if this halts then accept

Easy to deal with badly formed strings for the
reduction.

81

Number theory: a simple first-order the-
ory:

Sentences formed from the following entities,
according to ‘appropriate syntactic rules’:

(a) the constants 0 and 1;

(b) variables (denoted by lower case roman
letters);

(c) the binary arithmetic operators + and x;
(d) the relational operators < and =;
(e) the logical connectives A, V, and —;

(f) the quantifiers 3 (there exists) and V (for
all).

Sentences with no free variables interpreted as

statements about N.
82

Examples:

Vo Jy [z < y], true
Ve Jy[r =y + y], false

Can make quite complicated assertions:

prime(z) = VuVv [(u = 1)V(v = 1)V=(uxv = z)].

Ve Jy [(x < y)Aprime(y)], infinitely many primes
(true).

Vz Iy [(z < y) A prime(y) A prime(y + 1 + 1)],
infinitely many prime pairs (only a conjecture).

Lhnum the set of true sentences. Godel’'s In-
completeness theorem vields

THEOREM The language Lnhnym iS not recur-
sive.

83

