The halting problem

INSTANCE: A binary Turing machine M, and an input $x \in \{0, 1\}^*$.

QUESTION: Does M halt on input x?

What we will do:

- 1. Make this question precise by phrasing it as a language recognition problem.
- Show that the language is not recognized by any TM.
- 3. For amusement, produce a function with a mind blowing growth rate.

Recall: For every Turing machine M with input alphabet $\{0,1\}$, there is a binary Turing machine \widehat{M} that is equivalent to M: on every input, \widehat{M} halts if and only if M halts, and \widehat{M} accepts if and only if M accepts. (Note: *tape* alphabet of M is unrestricted.)

Example: TM M with

 $\Sigma = \{ 0, 1 \}$ $\Gamma = \{ 0, 1, \$, \# \}.$

Encode:

0	1	\$	#	Б
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
00	01	10	11	ЪЪ

Simulate M by machine \widehat{M} with input alphabet $\{0, 1\}$ and tape alphabet $\{0, 1, \overline{b}\}$.

M, \widehat{M} get same input:

$$0 \quad 1 \quad 1 \quad 0 \quad \overline{b} \quad \cdots$$

 \widehat{M} first encodes input and then simulates M: (i) Mark first square for later:

$$\overline{b}$$
 0 1 1 0 \overline{b} ····

(ii) Encode each symbol by using repeated right shifts:

(iii) Shift left at the end:

Now simulate M by doing everything in blocks of 2:

- 2 steps to read,
- 2 steps to write.

Recall: Encodings of binary TMs presented to UTM in format

0001011*0010111*01B1010*1000111

Use of * and B is to help us, machines couldn't care less.

Encode as a binary string by mapping:

0	1	В	*
\downarrow	\downarrow	\downarrow	\downarrow
00	01	10	11

Now

What's the point? Encodings of TMs now look the same as inputs to TMs ('programs as data').

Note: We insist that final state is given binary code for 1.

Halting problem as language recognition:

For binary TM M use $\langle M \rangle$ to denote its encoding as a binary string.

Define $L_{halt} \subset \{0, 1, \$\}$ by: $L_{halt} = \{\langle M \rangle \$x \mid x \in \{0, 1\}^* \text{ and}$ $M \text{ halts on input } x\}.$

Note: Lots of words fail to be in L_{halt} because they are badly formatted; obviously we can recognize these (by a TM).

LEMMA The language L_{halt} is recursively enumerable.

Gives a *semi-decision* procedure.

Most important result result of this module:

THEOREM The language L_{halt} is not recursive.

Dashes all hope of finding a *decision* procedure for the halting problem.

PROOF Suppose L_{halt} is recursive; so there is a TM M_{hope} that:

1. halts on *all* inputs,

2. accepts its input if and only if it is of form $\langle M \rangle$ \$x and machine M halts on input x.

We will derive a contradiction.

Mloop

 M_{diag}

 M_{diag} has input alphabet {0,1}. Transform it to equivalent binary TM M_{liar} with binary encoding $\langle M_{\text{liar}} \rangle$.

Now run M_{liar} on its own description:

 $M_{\rm liar}$ halts on input $\langle M_{\rm liar} \rangle$

 $\iff M_{\text{hope}} \text{ rejects } \langle M_{\text{liar}} \rangle \$ \langle M_{\text{liar}} \rangle$

 $\iff M_{\text{liar}}$ does not halt on input $\langle M_{\text{liar}} \rangle$.

A contradiction!

Conclusion: M_{hope} does not exist, i.e., L_{halt} is not recursive.

Note: Constructive nature of proof.

An explosive function: M a binary TM, $x \in \{0,1\}^*$ an input to M.

 $T(M, x) = \begin{cases} \text{no. of transitions} & \text{if } M \text{ halts on } x, \\ \text{undefined} & \text{otherwise.} \end{cases}$ Define $f : \mathbb{N} \to \mathbb{N}$ by:

$$f(n) = \begin{cases} 0 & \text{if } n = 0, \\ \max \left\{ T(M, x) \mid & \\ M \text{ halts on input } x \\ \text{and } \langle M \rangle \$x \text{ has length } n \right\} & \text{if } n > 0. \end{cases}$$

Note: *f* is a perfectly well defined total function:

• given n > 0 have only finitely many $\langle M \rangle$ \$x of length n and at least one always halts (the empty machine).

Question: Is there a TM transducer that computes f?

Suppose there is, call it M_f . Then can solve halting problem as follows (using a 2-tape TM).

Given M and input x:

- 1. Work out length of input, say n, and write it on second tape.
- 2. Use M_f to compute f(n) on the second tape.
- 3. Simulate M on x for at most f(n) transitions. If M halts then halt and accept else halt and reject (if M doesn't halt within f(n) steps it's not going to halt anyway).

Suppose $g:\mathbb{N}\to\mathbb{N}$ is any other function such that

 $g(n) \ge f(n)$, for all $n \in \mathbb{N}$.

Similar argument shows g is not computable.

Conclusion: *f* grows faster than *every* computable function!