Universal Turing machines

So far: Each Turing machine does just one thing.

Compare: A digital computer can carry out any program (expressed in its language), i.e., it is a stored program device.

Question: Can a TM (as a model) act as a stored program machine?

Answer: Yes!

We'll construct a TM M_u that takes:

1. description of any TM M,

2. any input x to M,

then simulates M on x.

Example of a universal Turing machine.

Problem: M_u must have a fixed input and tape alphabet.

But: Arbitrary TM can have *any* finite alphabet.

Solution: We restrict M to be binary, i.e.,

$$\Sigma = \{0, 1\}, \qquad \Gamma = \{0, 1, b\}$$

only!

Also no final state, acceptance is assumed if M gets stuck in a certain (agreed) state.

Simplifies matters a lot:

- not a restriction,
- can convert any TM to this form.

Running example: A TM that computes

$$f(n) = \begin{cases} 2n, & \text{if } n \text{ is odd;} \\ 2n+1, & \text{if } n \text{ is even.} \end{cases}$$

$$Q = \{ q_0, q_1, q_2, q_3 \},$$

$$I = q_0,$$

$$D = \{ (q_0, 0, q_1, 0, R), (q_0, 1, q_2, 1, R), (q_0, \overline{b}, q_3, \overline{b}, R),$$

$$(q_1, 0, q_1, 0, R), (q_1, 1, q_2, 1, R), (q_1, \overline{b}, q_3, 1, L),$$

$$(q_2, 0, q_1, 0, R), (q_2, 1, q_2, 1, R), (q_2, \overline{b}, q_3, 0, L) \}$$

Encoding Turing machines

 $M = (Q, q_I, \delta)$ encoded as a string over $\{0, 1, B, *\}$.

(a) States of M encoded as elements of $\{0, 1\}^k$, e.g., $k = \lceil \lg |Q| \rceil$.

• For simplicity q_I receives code 0^k ,

• otherwise assignment of codes to states is arbitrary.

Running example: k = 2,

q_{O}	q_1	q_2	q_{3}
\downarrow	\downarrow	\downarrow	\downarrow
00	01	10	11

(b) Tape symbols encoded as:

 $\begin{array}{cccc} 0 & \mathbf{1} & \overline{b} \\ \downarrow & \downarrow & \downarrow \\ \mathbf{0} & \mathbf{1} & \mathbf{B} \end{array}$

(Don't want to confuse \overline{b} of M_u with that of machine being simulated.)

(c) Directions encoded as:

$$egin{array}{ccc} L & R \ \downarrow & \downarrow \ 0 & 1 \end{array}$$

(d) Quintuples encoded as:

(q,	s,	$q^{\prime},$	s',	d)
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
	$\langle q angle$	$\langle s \rangle$	$\langle q' \rangle$	$\langle s' \rangle$	$\langle d angle$	

Length is 2k + 3 and $\langle x \rangle$ denotes code of x.

Running example: $\langle (q_0, 0, q_1, 0, R) \rangle = 0000101.$

Encode δ as

$$\langle M \rangle = \langle t_0 \rangle * \langle t_1 \rangle * \cdots * \langle t_{m-1} \rangle$$

where $t_1, t_1, \ldots, t_{m-1}$ are the quintuples (in some order).

Running example:

 $\langle M \rangle = 0000101 * 0011011 * 00B11B1 * 0100101 * 0111011 * 01B1110 * 1000101 * 1011011 * 10B1100.$

Universal Turing machine M_u : input alphabet is

$$\{0, 1, B, *, \$, ^\}.$$

To simulate M on input x start M_u with

$$0^{k+1} * \langle M \rangle \hat{x} .$$

Shorter running example:

 $\langle M \rangle = 0001011*0010111*01B1010*1000111,$ x = 0010.

Start M_u with

Each step of simulated machine, M, involves M_u in one cycle.

Each cycle has six phases.

Start:

 $000*0001011*0010111*01B1010*10001110010 Just before second cycle, i.e., just after simulating 0001011, tape of M_u is:

\$101*0001011*0010111*01B1010*1000111\$1^010

(i) Read scanned symbol and copy just before first *

\$100*0001011*0010111*01B1010*1000111\$1^010

(ii) Locate quintuple: stuff between first \$ and * is $\langle q \rangle \langle s \rangle$. Use 0 \rightarrow X, 1 \rightarrow Y, B \rightarrow Z as markers

\$100*XXXYXYY*XXYXYYY*XYZYXYX*YXX0111\$1^010

(iii) Fetch new state and symbol \$XYY*XXXYXYY*XXYXYY*XYZYXYX*YXXXYYY\$1^010 (iv) Print the new symbol

\$XYY*XXXYXYY*XXYXYY*XYZYXYX*YXXXYYY\$1^110

(v) Move tape head

\$XYY*XXXYXYY*XXYXYY*XYZYXYX*YXXXYYY\$11^10

(vi) Tidy tape X \rightarrow 0, Y \rightarrow 1, Z \rightarrow B, ready for next cycle

\$011*0001011*0010111*01B1010*1000111\$11^10