Random Access Machines (RAMs)

Input stream

3	7	10	7	3	0	

Program

Instruction Counter

Syntax of Ram programs:

$$
\begin{gathered}
\text { program }=\text { instruction program } \mid \text { instruction } \\
\text { instruction }=[\text { label :] (accept } \\
\mid \text { reject } \\
\mid \text { read l_value } \\
\mid \text { l_value }:=\text { r_value arithmetic_op r_value } \\
\mid \text { if } r \text { _value relational_op r_value soto label) } \\
\text { l_value }=\text { integer } \mid \text { " integer }^{\text {r_value }}=\text { integer } \mid \text { 'integer } \mid \text { "integer } \\
\text { arithmetic_op }=+|-|*| \text { div } \\
\text { relational_op }==|<>|<=|< \\
\text { label }=\text { alphanumeric_sequence. }
\end{gathered}
$$

Semantics of RAM programs:

- Infinitely many registers.
- Each register indexed by integer address.
- Initially all registers contain 0.
- Input is a stream of integers.

Instruction counter says which instruction to execute next (number them from 0 onwards).

State of the RAM: formally a function

$$
s: \mathbb{Z} \rightarrow \mathbb{Z}
$$

For every integer i,

$$
s(i)=\text { contents of register } i \text {. }
$$

Note: $s(i)=0$ for all but finitely many i.
At each step, state of machine and instruction counter are updated.

〈state, instruction counter〉 play role of configuration in Turing machine model.
l-values and r-values: L, R respectively,

- L evaluates to an address a.
- R evaluates to a value v.

In context s (the state):

$$
\begin{gathered}
a= \begin{cases}k & \text { if } L=' k, \\
s(k) & \text { if } L={ }^{\prime} k\end{cases} \\
v= \begin{cases}k & \text { if } R=k, \\
s(k) & \text { if } R=' k, \\
s(s(k)) & \text { if } R=" k\end{cases}
\end{gathered}
$$

.	10	...	12	2	2	0		6		-5		
	-5			0	0	1		10		24		

If $k=24$:

- as an l-value: ' $k=24, " k=-5$,
- as an r-value: ' $k=-5, " k=10$.

Recognizing languages:

Given alphabet Σ, encode as $1,2,3, \ldots,|\Sigma|$.

Encode σ (end of input) by 0.

Example:

$$
\begin{gathered}
\Sigma=\left\{\begin{array}{ccccc}
a, & b, & 0, & 1, & \$ \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
1, & 2, & 3, & 4, & 5
\end{array}\right\} \\
\text { Code }
\end{gathered}
$$

As given, RAMs don't compute functions, but could just add a write instruction.

Example: A RAM that accepts $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$.

Slight nuisance: RAMs only read integers.

- Just replace a by 1 and b by 2, language is now $\left\{1^{n} 2^{n} \mid n \in \mathbb{N}\right\}$.

High level description of algorithm:

```
count:= 0
while input is a 1
    count:= count + 1
while not at end of input
    if input is a 2
        count:= count-1
    else
        reject
if count = 0
    accept
else
    reject
```

RAM program: hold count in register 0, read current input into register 1.
start: read '1
if ' $1=1$ goto ones
if ' $1=2$ goto twos
if ' $1=0$ goto check
if $0=0$ goto no
ones: $\quad 10=10+1$
if $0=0$ goto start
twos: ' $0=10-1$
read '1
if ' $1=2$ goto twos
if ' $1=0$ goto check
if $0=0$ goto no
check: if ' $0=0$ goto yes
no: reject
yes: accept

Palindromes:
'1:=2
next_symbol: read "1
if "1 = 0 goto end of input
' $1:=11+1$
if $0=0$ goto next symbol
end_of_input: '1:= '1-1
' $0:=2$
loop: if ' $1<=$ ' 0 goto yes
if "0 <> "1 goto no
' $0:=$ ' $0+1$
'1:='1-1
if $0=0$ goto loop
yes: accept
no: reject

Bounded RAMs: Only difference is that registers restricted to contain integers in some bounded range $\{-N,-N+1, \ldots, N-1, N\}$.

Obvious fact: Bounded RAMs are no more powerful than standard ones.

Question: What about the converse?

Fact: Bounded RAMs cannot recognize palindromes, so they are less powerful than RAMs.

Equivalence of Turing machines and RAMs:

THEOREM Let L be a language over some alphabet Σ. If there is a RAM that accepts L, then there is a Turing machine that also accepts L.

Three-register RAMs: Just three registers,

State is a function from $\{-1,0,1\} \rightarrow \mathbb{Z}$.

- only I_values allowed are '-1, '0, and '1;
- only r_values allowed are '-1, '0, '1, and signed decimal constants;
- 'indirect addressing' forbidden.

THEOREM Let L be a language over some alphabet Σ. If there is a Turing machine that accepts L, then there is a three-register RAM that also accepts L.

Recursively enumerable languages:

- $\mathcal{C}_{\text {TM }}$ denotes class of languages that are accepted by some Turing machine, i.e.,

$$
\mathcal{C}_{\mathrm{TM}}=\{L(M) \mid M \text { is a Turing machine }\} .
$$

- $\mathcal{C}_{\text {RAM }}$ denotes similar class for RAMs.
- $\mathcal{C}_{\text {3RAM }}$ denotes similar class for three-register RAMs.

Theorems above show

$$
\mathcal{C}_{\mathrm{TM}}=\mathcal{C}_{\mathrm{RAM}}=\mathcal{C}_{3 \mathrm{RAM}} .
$$

(Tacit assumption: we have fixed a common alphabet.)

Languages in $\mathcal{C}_{\text {TM }}$ called recursively enumerable (usually abbreviated to r.e.).

