Bells and whistles

Doubly infinite tape:

LEMMA A language L is accepted by a Turing machine with doubly infinite tape if and only if L is accepted by a Turing machine with singly infinite tape.
'If' part is easy.
'Only if' part needs more thought.

Suppose L accepted by

$$
M=\left(Q,\left\ulcorner, \Sigma, \delta, q_{I}, q_{F}, \delta\right)\right.
$$

with doubly infinite tape.

Must show: how to construct machine

$$
\widehat{M}=\left(\widehat{Q}, \widehat{\Gamma}, \widehat{\Sigma}, \widehat{b}, \widehat{q}_{I}, \widehat{q}_{F}, \widehat{\delta}\right)
$$

with singly infinite tape which accepts L

The tape of M

$\$$	s_{-1}	s_{-2}	s_{-3}	s_{-4}	s_{-5}	\cdots
s_{0}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	\cdots

The tape of \widehat{M}

$$
\begin{aligned}
& \widehat{Q}=\left\{\hat{q}_{I}, \hat{q}_{F}\right\} \cup(Q \times\{0,1\}), \\
& \hat{\Gamma}=\Gamma \times(\Gamma \cup\{\$\}), \\
& \hat{\Sigma}=\Sigma \times\{\bar{\sigma} \subset \hat{\Gamma} .
\end{aligned}
$$

$1:$ | $\$$ | s_{-1} | s_{-2} | s_{-3} | s_{-4} | s_{-5} | \cdots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0:$ | s_{0} | s_{1} | s_{2} | s_{3} | $s_{4} s_{5}$ | \cdots |

(1) Transitions from the initial state:

$$
\widehat{\delta}\left(\widehat{q}_{I},\langle s, \bar{b}\rangle\right)=\left\{\begin{array}{c}
\left(\left\langle q^{\prime}, 0\right\rangle,\left\langle s^{\prime}, \$\right\rangle, R\right) \\
\text { if } \delta\left(q_{I}, s\right)=\left(q^{\prime}, s^{\prime}, R\right) ; \\
\left(\left\langle q^{\prime}, 1\right\rangle,\left\langle s^{\prime}, \$\right\rangle, R\right) \\
\text { if } \delta\left(q_{I}, s\right)=\left(q^{\prime}, s^{\prime}, L\right)
\end{array}\right.
$$

[The special symbol $\$$ is written to mark the end of the tape while, simultaneously, the first move of M is simulated.]
(2) Transitions to the final state:

$$
\widehat{\delta}\left(\left\langle q_{F}, \cdot\right\rangle,\left\langle s_{0}, s_{1}\right\rangle\right)=\left(\widehat{q}_{F},\left\langle s_{0}, s_{1}\right\rangle, R\right) .
$$

[If M enters its accepting state, then \widehat{M} enters its accepting state on the following move.]
(3) Transitions when M is scanning square 0 :

$$
\widehat{\delta}(\langle q, \cdot\rangle,\langle s, \$\rangle)=\left\{\begin{array}{c}
\left(\left\langle q^{\prime}, 0\right\rangle,\left\langle s^{\prime}, \$\right\rangle, R\right), \\
\text { if } \delta(q, s)=\left(q^{\prime}, s^{\prime}, R\right) ; \\
\left(\left\langle q^{\prime}, 1\right\rangle,\left\langle s^{\prime}, \$\right\rangle, R\right), \\
\text { if } \delta(q, s)=\left(q^{\prime}, s^{\prime}, L\right) .
\end{array}\right.
$$

[If the head of M moves right the simulation is continued on the lower track, otherwise on the upper track.]
(4) Transitions when M is scanning a square with positive index:

$$
\widehat{\delta}\left(\langle q, 0\rangle,\left\langle s_{0}, s_{1}\right\rangle\right)=\left\{\begin{array}{c}
\left(\left\langle q^{\prime}, 0\right\rangle,\left\langle s_{0}^{\prime}, s_{1}\right\rangle, L\right), \\
\text { if } \delta\left(q, s_{0}\right)=\left(q^{\prime}, s_{0}^{\prime}, L\right) ; \\
\left(\left\langle q^{\prime}, 0\right\rangle,\left\langle s_{0}^{\prime}, s_{1}\right\rangle, R\right), \\
\text { if } \delta\left(q, s_{0}\right)=\left(q^{\prime}, s_{0}^{\prime}, R\right)
\end{array}\right.
$$

(5) Transitions when M is scanning a square with negative index:
$\widehat{\delta}\left(\langle q, 1\rangle,\left\langle s_{0}, s_{1}\right\rangle\right)=\left\{\begin{array}{c}\left(\left\langle q^{\prime}, 1\right\rangle,\left\langle s_{0}, s_{1}^{\prime}\right\rangle, R\right), \\ \text { if } \delta\left(q, s_{1}\right)=\left(q^{\prime}, s_{1}^{\prime}, L\right) ; \\ \left(\left\langle q^{\prime}, 1\right\rangle,\left\langle s_{0}, s_{1}^{\prime}\right\rangle, L\right), \\ \text { if } \delta\left(q, s_{1}\right)=\left(q^{\prime}, s_{1}^{\prime}, R\right) .\end{array}\right.$
[Note that \widehat{M} must move its head in the opposite direction to that of M.]

Several tapes

k (singly infinite) tapes, k heads.

1. the finite control moves to a new state;
2. each tape head prints a new symbol on the tape square it currently scans;
3. each tape head moves (independently) one square left or right.

Start with input on first tape at the left.

Simulation of a 2-tape machine

s_{0}	s_{1}	s_{2}				
So	\wedge		s_{3}	S4	s5	

t_{0}	t_{1}	t_{2}	t_{3}	t_{4}			
				\wedge			

The tapes of M

s_{0}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	\cdots
$\bar{\zeta}$	\wedge	$\overline{ }$	$\overline{ }$	$\overline{ }$	$\overline{ }$	\cdots
t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	\cdots
$\bar{\zeta}$	\bar{b}	\bar{b}	$\overline{ }$	\wedge	$\overline{ }$	\cdots

The tape of \widehat{M}

Other variants

- Two-dimensional array or page of squares, in place of the one-dimensional array of squares.
- k heads each moving independently of each other (on the same tape).
- Many others.

