Computability and Intractability

Brief history:

- 1. Babylonian tablets.
- 2. Euclid, gcd of integers.
- 3. Babbage, difference engine and analytical engine.
- 4. Foundations of Mathematics and Logic.

Notation and conventions

- Express things textually.
- Strings over a finite alphabet A.
- All valid programs: P_0, P_1, P_2, \ldots
- All inputs/outputs: $I_0, I_1, I_2 \dots$
- Encode inputs as natural numbers (convenience only).

Non-termination

Would like: general theory of computation in which all programs are guaranteed to terminate and produce an output.

Consider:

on input *n* run program P_n on *n* to obtain the output *R*; if $R = I_0$ then return I_1 else return I_0 ;

A valid program P_m (say). Now look at output of P_m when run on m; get a contradiction! **Conclusion:** Must drop requirement that all programs always terminate.

on input *n* run program P_n on *n*; if this terminates let the output be *R*; if $R = I_0$ then return I_1 else return I_0 ;

A valid program P_m (say); previous argument shows that P_m does not halt on input m.

The Halting Problem

New goal: find a program H that takes arguments m, n and returns True if P_m halts on input n, otherwise it returns False.

Consider:

if H(n,n) then loop forever else halt (and return 0)

A valid program P_m (say). Now look at output of P_m when run on m; get a contradiction!

Conclusion: H does not exist; halting problem is unsolvable.

Diagonalization

	0	1	2	•••
P_0	$P_0(0)$	$P_0(1)$	<i>P</i> ₀ (2)	•••
P_1	<i>P</i> ₁ (0)	<i>P</i> ₁ (1)	<i>P</i> ₁ (2)	•••
P_2	<i>P</i> ₂ (0)	$P_2(1)$	P ₂ (2)	•••
:	:	÷	:	·

Cantor: cardinality and infinite sets

Integers and even integers:

• • •	-2	-1	0	1	2	• • •
•••	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	•••
	-4	-2	0	2	4	• • •

The real numbers and (0, 1):

7

 \mathbb{R} versus \mathbb{N} : Suppose there is a 1-1 correspondence between (0,1) and \mathbb{N} , so can list (0,1) as $\alpha_0, \alpha_1, \alpha_2, \ldots$ where

 $\alpha_i = 0.\alpha_{i0}\alpha_{i1}\alpha_{i2}\ldots$

	0	1	2	•••
$lpha_{0}$	$lpha_{00}$	α_{01}	α_{02}	• • •
α_1	$lpha_{10}$	α_{11}	α_{12}	• • •
α_2	α_{20}	α_{21}	α_{22}	•••
:	:	:	:	•••

Define

$$\delta_i = \begin{cases} 1, & \text{if } \alpha_{ii} \neq 1; \\ 2, & \text{if } \alpha_{ii} = 1. \end{cases}$$

Now $0.\delta_0\delta_1\delta_2...$ is in (0, 1) but is different from each $\alpha_i!$

X versus $\mathcal{P}(X)$: Suppose there is a function f from X onto $\mathcal{P}(X)$, i.e., for every $Y \in \mathcal{P}(X)$ there is a $y \in X$ such that Y = f(y). Consider

$$A = \{ x \in X \mid x \notin f(x) \}.$$

There must be an $a \in X$ such that A = f(a). But by definition of A,

> $a \in A$ if and only if $a \notin f(a)$ if and only if $a \notin A$!

Paradise lost: Russell's paradox

 $R = \{ x \mid x \text{ is a set and } x \notin x \}.$

Now

$$R \in R \Leftrightarrow R \notin R.$$

In words: Consider catalogues; some list themselves and some do not. Try to build a catalogue of all catalogues that do not list themselves.

Truth and formal proof: Gödel

S ='This sentence is unprovable.'

System of deduction D,

 $S_D =$ 'This sentence is unprovable in system D.'

 $S_{D,n} =$ 'The statement in the system D whose number is n is unprovable in D.'

Formal models of computing

Requirements:

- Computation within the model should proceed by a sequence of steps, each step being entirely mechanical. We want the model to be, at least in principle, physically realisable.
- The model should support the computation of all things that we intuitively believe to be computable. This requirement rules out finite state machines.
- 3. The model should be simple, so that a 'theory of computation' can be developed without unnecessary complications.

Met by model proposed by Alan Turing in 1936