§12. Cook’s theorem. Since a deterministic TM is a special case of a nonde-
terministic TM it is clear that \(P \subseteq NP \). However there is no reason to believe
that the classes \(P \) and \(NP \) are equal, and indeed it is widely conjectured that
\(P \subset NP \).\footnote{Note that the symbol \(\subset \) denotes strict containment.} Note that if the conjecture is true, then the class \(NP \) contains some
computationally intractable languages.

Using polynomial-time reductions it is possible to identify a certain class of
languages which are, computationally, the ‘hardest’ in \(NP \). A language \(L \) is said
to be \(NP \)-hard if every language in \(NP \) is polynomial-time reducible to \(L \). A
language \(L \) is \(NP \)-complete if \(L \in NP \) and \(L \) is \(NP \)-hard. The significance of
\(NP \)-completeness is made clear in the following result:

Corollary 12.1 Let \(L \) be any \(NP \)-hard language. \(L \) cannot be in \(P \) unless we
have \(P = NP \).

Proof. Suppose \(L \in P \), and let \(L' \) be an arbitrary language in \(NP \). Since \(L \) is
\(NP \)-hard, \(L' \) must be polynomial-time reducible to \(L \). Therefore, by Theorem 11.1,
\(L' \in P \). But \(L' \) was chosen arbitrarily from \(NP \), and hence \(P = NP \). \(\Box \)

It follows from Corollary 12.1 that the \(NP \)-complete languages are either all in \(P \)
(i.e., tractable) or all outside \(P \) (i.e., intractable). The fact that no one has so
far found a polynomial-time algorithm for recognizing any \(NP \)-complete language
provides strong empirical evidence in support of the conjecture that \(P \subset NP \). Of
course it is also true that nobody has managed to prove that the inclusion really
is strict and so it is perfectly possible that \(P = NP \). At the moment all we can say
with certainty is that we don’t know!

The criterion for a language \(L \) to be \(NP \)-complete is a strong one: every lan-
guage in \(NP \) must be polynomial-time reducible to \(L \). Thus it comes as a surprise
that \(NP \)-complete languages should occur naturally. Indeed the existence of such
languages was unsuspected much before 1971, when Stephen Cook demonstrated
that \(SAT \) is \(NP \)-complete. (The result was discovered independently by Leonid
Levin in the former Soviet Union, but several years were to pass before his work
became known in the West.)

Theorem 12.1 \(SAT \) is \(NP \)-complete.

Proof. It was demonstrated, in Note 11, that \(SAT \in NP \). To complete the proof
we must show that \(SAT \) is \(NP \)-hard, i.e., that every language in \(NP \) is polynomial-
time reducible to \(SAT \).

Suppose \(L \) is any language in \(NP \). Let \(M = (Q, \Gamma, \Sigma, b, q_1, q_F, \delta) \) be a \(p(n) \)
time-bounded nondeterministic TM recognizing \(L \), where \(p \) is some polynomial.
We show how to construct, given any input $x \in \Sigma^n$ for M, a CNF formula $\phi_M(x)$ such that

$$M \text{ accepts } x \iff \phi_M(x) \text{ is satisfiable.}$$

The mapping from x to $\phi_M(x)$ is computable in time polynomial in the length of x, and hence is a polynomial-time reduction from L to Sat. Since L was chosen arbitrarily, it will follow that Sat is NP-complete. The reduction makes use of the concept of a tableau. A tableau for M on input x is a table that represents an accepting computation of M on x. (See Figure 6.) The rows of the table correspond to successive configurations in a computation of M on input x. Since M is of time complexity $p(n)$, these configurations can have length at most $m + 2$, where $m = p(n)$. Each row is formed by padding a configuration to length $p(n) + 4$ by adding trailing blanks, and then enclosing the whole in a pair of end-marker symbols ($\# \cdot \cdot \cdot \#$) which are not part of the tape alphabet of M. Row 0 of the table contains the initial configuration of M, row 1 the configuration of M after one move, row 2 the configuration of M after two moves, and so on. The final row of the table (row m) is an accepting configuration of M reached after m steps. (We use the convention that once an accepting configuration is reached it is repeated, so that any accepting computation can be padded out to length exactly m.) Note that $x \in L$ if and only if a tableau for M on x exists.

The formula $\phi = \phi_M(x)$ expresses the existence of a tableau as follows: for each square (i, j) of the tableau, with $0 \leq i \leq m$, $0 \leq j \leq m + 3$, introduce a set of Boolean variables Z_{ij}, where s ranges over the set $\Gamma \cup Q \cup \{\#\}$ of tape symbols and states of M, together with the special end-marker $\#$. The intended interpretation is that Z_{ij} will be true if and only if square (i, j) contains the symbol s. The
formula ϕ is constructed as the conjunction of four sub-formulas:

$$\phi = \phi_{\text{config}} \land \phi_{\text{initial}} \land \phi_{\text{accept}} \land \phi_{\text{compute}}.$$

These are defined as follows:

(i) ϕ_{config} ensures that each square contains precisely one symbol, i.e.,

$$\phi_{\text{config}} = \bigwedge_{i,j} \left[\left(\bigvee_s Z_{ijs} \right) \land \bigwedge_{s \neq s'} \left(\neg Z_{ijs} \lor \neg Z_{ijs'} \right) \right].$$

(ii) ϕ_{initial} ensures that the first row is the initial configuration of M on x, i.e.,

$$\phi_{\text{initial}} = Z_{00}^q \land Z_{01qf} \land Z_{0,m+3}^q \land \bigwedge_{j=2}^{n+1} Z_{0,jx-2} \land \bigwedge_{j=n+2}^{m+2} Z_{0j\bar{b}}.$$

(iii) ϕ_{accept} ensures that the final configuration is accepting, i.e.,

$$\phi_{\text{accept}} = \bigvee_j Z_{mj\#F}.$$

(iv) ϕ_{compute} ensures that every 2×3 window onto the tableau of the form

![Tableau](https://via.placeholder.com/150)

is correct, i.e.,

$$\phi_{\text{compute}} = \bigwedge_{0 \leq i \leq m-1, \ 0 \leq j \leq m+1} C_{ij},$$

where C_{ij} expresses correctness of the window with top left square (i, j). The clause C_{ij} is based on a fixed formula that enumerates all legitimate windows allowed by the transition relation δ of M; the various C_{ij} differ only in the values of the coordinate parameters i, j. The important point to observe is that global correctness of the tableau with respect to the transition relation δ follows from local correctness of all the 2×3 windows. [The reader should check this assertion. By placing the window so that the centre square of the top row is over a symbol of Q, one can verify that the changes that take place in the vicinity of the tape head are consistent with the transition relation; then by placing the window in positions where no symbol of Q appears in the top row, one can verify that no changes occur away from the tape head.]
Note that ϕ is essentially already in CNF. The only additional work needed is to convert the parameterized formula C_{ij} used in ϕ_{compute} into CNF. Since this formula has fixed length, a brute force method can be used.

Now ϕ has length $O(p(n)^2)$ and can easily be computed in polynomial time given x. Furthermore, it follows from our discussion that ϕ is satisfiable if and only if M accepts x.

Now that we have one example of an NP-complete language, life becomes easier: we can demonstrate that new languages are NP-complete by exhibiting reductions from languages that are already known to be NP-complete. More precisely:

Theorem 12.2 Let L_1 and L_2 be languages. If L_1 is NP-hard and $L_1 \leq_p L_2$, then L_2 is NP-hard.

Proof. Let L be any language in NP. Since L_1 is NP-hard, $L \leq_p L_1$. Now the relation \leq_p is transitive [exercise], so $L \leq_p L_2$. Thus every language L in NP is polynomial-time reducible to L_2, and hence L_2 is NP-hard.

To illustrate the use of Theorem 12.2, we shall apply it to the language CLIQUE introduced in Note 11.

Theorem 12.3 CLIQUE is NP-complete.

Proof. SAT is NP-complete (Cook’s theorem), and SAT \leq_p CLIQUE (see Note 10). Hence, by Theorem 12.2, CLIQUE is NP-hard. But CLIQUE is in NP [exercise] and the theorem follows.

Using a similar approach, many other naturally occurring problems can be shown to be NP-complete; we shall meet some of these problems in Note 13.

We have remarked that demonstrating that a language L is NP-complete provides substantial empirical evidence that L is computationally intractable. Now, if it could be proved that $P \subset NP$, we would be certain that L is computationally intractable. Unfortunately, as mentioned above, no one has yet provided such a proof.