
UG3 Computability and Intractability (2008-2009): Note 12

§12. Cook’s theorem. Since a deterministic TM is a special case of a nonde-
terministic TM it is clear that P ⊆ NP. However there is no reason to believe
that the classes P and NP are equal, and indeed it is widely conjectured that
P ⊂ NP.28 Note that if the conjecture is true, then the class NP contains some
computationally intractable languages.

Using polynomial-time reductions it is possible to identify a certain class of
languages which are, computationally, the ‘hardest’ in NP. A language L is said
to be NP-hard if every language in NP is polynomial-time reducible to L. A
language L is NP-complete if L ∈ NP and L is NP-hard. The significance of
NP-completeness is made clear in the following result:

Corollary 12.1 Let L be any NP-hard language. L cannot be in P unless we
have P = NP.

proof. Suppose L ∈ P, and let L′ be an arbitrary language in NP. Since L is
NP-hard, L′ must be polynomial-time reducible to L. Therefore, by Theorem 11.1,
L′ ∈ P. But L′ was chosen arbitrarily from NP, and hence P = NP. �

It follows from Corollary 12.1 that the NP-complete languages are either all in P
(i.e, tractable) or all outside P (i.e., intractable). The fact that no one has so
far found a polynomial-time algorithm for recognizing any NP-complete language
provides strong empirical evidence in support of the conjecture that P ⊂ NP. Of
course it is also true that nobody has managed to prove that the inclusion really
is strict and so it is perfectly possible that P = NP. At the moment all we can say
with certainty is that we don’t know!

The criterion for a language L to be NP-complete is a strong one: every lan-
guage in NP must be polynomial-time reducible to L. Thus it comes as a surprise
that NP-complete languages should occur naturally. Indeed the existence of such
languages was unsuspected much before 1971, when Stephen Cook demonstrated
that Sat is NP-complete. (The result was discovered independently by Leonid
Levin in the former Soviet Union, but several years were to pass before his work
became known in the West.)

Theorem 12.1 Sat is NP-complete.

proof. It was demonstrated, in Note 11, that Sat ∈ NP. To complete the proof
we must show that Sat is NP-hard, i.e., that every language in NP is polynomial-
time reducible to Sat.

Suppose L is any language in NP. Let M = (Q, Γ, Σ, b̄ , qI , qF , δ) be a p(n)
time-bounded nondeterministic TM recognizing L, where p is some polynomial.

28Note that the symbol ⊂ denotes strict containment.

61



t
i
m
e
s
t
e
p

column number

0 1 2 3 · · · n+1 n+2 · · · · · · m+2 m+3

0 # qI x0 x1 · · · xn−1 b̄ · · · · · · b̄ #

1 # #

2
...

...

...
...

m # qF #

Figure 6: A tableau for M on input x.

We show how to construct, given any input x ∈ Σn for M , a CNF formula φM(x)
such that

M accepts x ⇐⇒ φM(x) is satisfiable.

The mapping from x to φM(x) is computable in time polynomial in the length
of x, and hence is a polynomial-time reduction from L to Sat. Since L was
chosen arbitrarily, it will follow that Sat is NP-complete. The reduction makes
use of the concept of a tableau. A tableau for M on input x is a table that
represents an accepting computation of M on x. (See Figure 6.) The rows of the
table correspond to successive configurations in a computation of M on input x.
Since M is of time complexity p(n), these configurations can have length at most
m + 2, where m = p(n). Each row is formed by padding a configuration to length
p(n) + 4 by adding trailing blanks, and then enclosing the whole in a pair of end-
marker symbols (# · · · #) which are not part of the tape alphabet of M . Row 0
of the table contains the initial configuration of M , row 1 the configuration of M
after one move, row 2 the configuration of M after two moves, and so on. The
final row of the table (row m) is an accepting configuration of M reached after
m steps. (We use the convention that once an accepting configuration is reached
it is repeated, so that any accepting computation can be padded out to length
exactly m.) Note that x ∈ L if and only if a tableau for M on x exists.

The formula φ = φM(x) expresses the existence of a tableau as follows: for
each square (i, j) of the tableau, with 0 ≤ i ≤ m, 0 ≤ j ≤ m+3, introduce a set of
Boolean variables Zijs, where s ranges over the set Γ∪Q∪{#} of tape symbols and
states of M , together with the special end-marker #. The intended interpretation
is that Zijs will be true if and only if square (i, j) contains the symbol s. The

62



formula φ is constructed as the conjunction of four sub-formulas:

φ = φconfig ∧ φinitial ∧ φaccept ∧ φcompute.

These are defined as follows:

(i) φconfig ensures that each square contains precisely one symbol, i.e.,

φconfig =
∧
i,j

[(∨
s

Zijs

)
∧

∧
s 6=s′

(
¬Zijs ∨ ¬Zijs′

)]
.

(ii) φinitial ensures that the first row is the initial configuration of M on x, i.e.,

φinitial = Z00# ∧ Z01qI
∧ Z0,m+3,# ∧

n+1∧
j=2

Z0jxj−2
∧

m+2∧
j=n+2

Z0j b̄ .

(iii) φaccept ensures that the final configuration is accepting, i.e.,

φaccept =
∨
j

ZmjqF
.

(iv) φcompute ensures that every 2× 3 window onto the tableau of the form

is correct, i.e.,

φcompute =
∧

0≤i≤m−1
0≤j≤m+1

Cij,

where Cij expresses correctness of the window with top left square (i, j). The
clause Cij is based on a fixed formula that enumerates all legitimate windows
allowed by the transition relation δ of M ; the various Cij differ only in the
values of the coordinate parameters i, j. The important point to observe is
that global correctness of the tableau with respect to the transition relation δ
follows from local correctness of all the 2 × 3 windows. [The reader should
check this assertion. By placing the window so that the centre square of the
top row is over a symbol of Q, one can verify that the changes that take place
in the vicinity of the tape head are consistent with the transition relation;
then by placing the window in positions where no symbol of Q appears in
the top row, one can verify that no changes occur away from the tape head.]

63



Note that φ is essentially already in CNF. The only additional work needed is
to convert the parameterized formula Cij used in φcompute into CNF. Since this
formula has fixed length, a brute force method can be used.

Now φ has length O(p(n)2) and can easily be computed in polynomial time
given x. Furthermore, it follows from our discussion that φ is satisfiable if and
only if M accepts x. �

Now that we have one example of an NP-complete language, life becomes easier:
we can demonstrate that new languages are NP-complete by exhibiting reductions
from languages that are already known to be NP-complete. More precisely:

Theorem 12.2 Let L1 and L2 be languages. If L1 is NP-hard and L1 ≤P L2,
then L2 is NP-hard.

proof. Let L be any language in NP. Since L1 is NP-hard, L ≤P L1. Now the
relation ≤P is transitive [exercise], so L ≤P L2. Thus every language L in NP is
polynomial-time reducible to L2, and hence L2 is NP-hard. �

To illustrate the use of Theorem 12.2, we shall apply it to the language Clique
introduced in Note 11.

Theorem 12.3 Clique is NP-complete.

proof. Sat is NP-complete (Cook’s theorem), and Sat ≤P Clique (see Note 10).
Hence, by Theorem 12.2, Clique is NP-hard. But Clique is in NP [exercise] and
the theorem follows. �

Using a similar approach, many other naturally occurring problems can be shown
to be NP-complete; we shall meet some of these problems in Note 13.

We have remarked that demonstrating that a language L is NP-complete pro-
vides substantial empirical evidence that L is computationally intractable. Now,
if it could be proved that P ⊂ NP, we would be certain that L is computationally
intractable. Unfortunately, as mentioned above, no one has yet provided such a
proof.

64


