
UG3 Computability and Intractability (2008-2009): Note 11

§11. More on reductions; nondeterministic computation. In Note 10,
it was claimed that polynomial-time reductions provide a means for comparing
the computational tractability of languages. That claim is made precise in the
following theorem, which is an analogue of Theorem 9.2.

Theorem 11.1 Suppose L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 are languages. If L1 is polynomial-
time reducible to L2, and L2 is in the class P, then L1 is also in the class P.

proof. Since L2 ∈ P, there is a polynomial-time Turing machine M2 which
accepts L2. Further, since L1 is reducible to L2, there is a function f : Σ∗

1 → Σ∗
2

satisfying conditions (a) and (b) of page 51 of Note 10. We shall use these
observations to construct a polynomial-time Turing machine M1 which accepts
the language L1. It will follow that the language L1 is in P.

On input x ∈ Σ∗
1 the machine M1 operates as follows. First, M1 invokes the

polynomial-time transducer assured by condition (b) to transform the word x into
the word f(x). Then M1 returns its head to the left of the tape and proceeds
to behave exactly like M2. By condition (a), it is clear that M1 accepts the
language L1.

It only remains to check that the machine M1 is polynomial time. Suppose
that the machine M2 is of time complexity p2(n), and the transducer is of time
complexity pt(n) where p2 and pt are both polynomials. (Without loss of generality,
we assume that p2(n) and pt(n) are both increasing functions of n; you should
justify this.) The time complexity of M1 can be calculated by summing the time
complexities of the three phases of the computation:

(1) Computing f(x) from x requires at most pt(n) steps, where n is the length
of the input word x.

(2) While computing f(x), the head of M1 can have strayed at most pt(n) steps,
and hence can be returned to the leftmost square in at most pt(n) further
steps.

(3) The word f(x) was written down within pt(n) steps, and hence can have
length at most pt(n). In the final phase, M1 behaves as M2 would on in-
put f(x). Hence the number of steps performed in the final phase is at most
p2(pt(n)).

Thus the machine M1 is of time complexity p1(n) = 2pt(n) + p2(pt(n)). Observe
that p1 is a polynomial (whose degree is the product of the degrees of p2 and pt).
�

54

Note that in the preceding theorem if L2 is recognized in time nd and the reduction
is computable in time ne then the proof shows that L2 is recognized in time nde+2ne

and this might be the best that we can do. Thus if we want a class that is closed
under polynomial time reductions25 and that contains those languages that are
recognized in linear time (i.e., time cn for constant c) then we must include at
least all of P.

An equivalent statement of Theorem 11.1 is that if L1 is polynomial-time re-
ducible to L2, and L1 is not in P, then L2 is not in P. It is in this form that
we shall use the theorem. Note the analogy with the use of reductions in es-
tablishing undecidability results. By exhibiting a reduction from a non-recursive
language L1 to another language L2, we demonstrate that L2 is non-recursive; by
exhibiting a polynomial-time reduction from an intractable language L1 to another
language L2, we demonstrate that L2 is intractable.

By way of example, consider the problems Sat and Clique that were defined
in Note 10. Recall that it was shown that Sat is polynomial-time reducible to
Clique. Now, if it could be proved that Clique ∈ P then we could immediately
deduce, using Theorem 11.1, that Sat ∈ P. Equivalently, if it could be proved
that Sat /∈ P then we could deduce that Clique /∈ P. Thus, even if we do not
know the absolute computational complexity, or difficulty, of these two problems,
we can at least say something about their relative complexity.

We shall see later, as a consequence of a much more general result known
as Cook’s theorem, that Clique ≤P Sat. (Note that this is the converse of the
result obtained in §10.3.) Thus, by Theorem 11.1, Sat and Clique are either both
in P or both outside P. Sat and Clique are members of a large class of naturally
defined problems — drawn from logic, graph theory, and many other areas — which
are all pairwise related by polynomial-time reductions. Theorem 11.1 says that the
problems in this class are either all in P (i.e., all tractable), or all outside P (i.e., all
intractable). Most computer scientists suspect the latter; however nobody has so
far been able to prove this. The fact that so many apparently difficult problems are
related by polynomial-time reductions is a surprising and unexpected phenomenon.
To begin to understand it, we must venture into the realm of nondeterministic
computation but first we look at another motivation for such a move.

§11.1. Näıve search and P. Many interesting computational problems concern
questions about finite structures, typically: ‘given a structure of the appropriate
type does it have a certain property?, e.g., a sub-structure of a certain type’
(Clique provides a typical example). For very many such problems we have the
interesting situation that given a proposed solution it is a fairly easy matter to

25If we have a notion of reducibility between languages then we say that a class C of languages
is closed under that notion if whenever a language L is reducible to some language in C then L
is also in C.

55

check its correctness (more accurately we can check in time that is polynomial in
the length of the problem instance). One method of answering such questions is
by näıve search, i.e., try all of the finitely many possibilities one after the other.
Rather than go into generalities let us illustrate the point with an early example
of such a question.

Instance: A finite undirected graph G.

Question: Does G have an Eulerian cycle, i.e., can we start at a vertex v,
visit every edge exactly once, and return to v?

Clearly this problem26 is solvable: let the edges be e1, e2, . . . , en. Try all possible
permutations of the edges and for each permutation test it to see if it does the job.
Although this is an algorithm it is näıve to say the least; there are n! permutations
to try! In fact Euler proved that the answer is ‘yes’ if and only if the graph is
connected and each vertex has an even number of edges attached. Obviously this
condition is easy to check and provides a practical solution to the problem (but
how can we check efficiently that a graph is connected?).

A general question now suggests itself. Are there problems for which we can
do no better than näıve search? If we are to answer this question we need to
capture the notion of näıve search in a manageable way. Note that we do not
really want to rule out searching altogether since small structures can be searched
in acceptable time. The key point is that an uncontrolled näıve search will lead
us to consider a number of possibilities that grows faster than any polynomial.
Roughly speaking at each decision point we have two or more choices so that if
the number of decision points is proportional to the size of the input, say it is at
least cn for some constant c, then we have at least 2cn possibilities to consider
(this argument is meant only as a rough indication). We are therefore lead again
to the following simple criterion for ruling out näıve search: given a problem can
it be solved in time that is a polynomial function of the size of the input instance?

Euler’s success amongst many others shows that certain problems do have
structure that can be exploited. As another, deeper, example consider the problem
of perfect matchings for bipartite graphs27. It is possible to provide a practical
polynomial time algorithm based on Flow Networks. In general if a problem is at
all non-trivial then finding a polynomial time algorithm for it involves a genuine
breakthrough. This observation is another reason for focusing on the class P.

We can model näıve search by Turing machines by means of a very simple
relaxation on the transition function δ and we proceed to describe this in the next

26The problem has its origins in a puzzle based on bridges connecting islands in a river at
Königsberg.

27See T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms, MIT Press,
(1994) for a definition and further details.

56

section. This in turn allows us to formulate the central question of this part of the
course in precise terms.

Exercise Prove Euler’s result as described above.

Exercise This exercise is designed to illustrate the point that certain problems
can be put into P for very trivial reasons. A triangle in a graph is a subgraph
consisting of exactly three vertices each of which is joined to the other by an edge
of the graph, i.e., a 3-clique. Give a polynomial time algorithm to decide if a given
graph contains a triangle (take the number of vertices to be the size of the input).

Exercise Clearly Sat and Clique are problems that can be attacked by näıve
search. What are the resulting runtimes, measured in terms of any natural defini-
tion for the size of an instance?

§11.2. Nondeterministic Turing machines. A nondeterministic Turing ma-
chine differs from the deterministic Turing machines of Note 3 in just one re-
spect. In a nondeterministic machine, transitions are governed, not by a par-
tial function δ : (Q × Γ) → (Q × Γ × {L, R}), but by a general relation δ ⊆
(Q × Γ) × (Q × Γ × {L, R}). Just as before, we may envisage δ as a set of quin-
tuples. However, whereas this set of quintuples was previously constrained by the
fact that δ was a function, it is now entirely unconstrained so that for a given state
q and symbol a there might be several quintuples (q, a, ·, ·, ·). All the other defini-
tions of Note 3 — configurations, the relation `, computations, and the condition
for acceptance — remain unchanged. Thus the deterministic Turing machine is a
special case of the nondeterministic Turing machine (as it ought to be).

From a definitional point of view, nothing more need be added. However it is
worth pausing to consider some of the consequences of generalizing δ from a partial
function to a relation. Let M = (Q, Γ, Σ, b̄ , qI , qF , δ) be a nondeterministic TM.
For each configuration γ of M , there will in general be several next configurations:
γ ` γ′

1, γ ` γ′
2, . . . , γ ` γ′

k, where γ′
1, . . . , γ′

k are all distinct. Thus, for any word
x ∈ Σ∗, there may be very many possible computations of M on input x. Now,
recall that the language accepted by M is defined to be

L(M) = {x ∈ Σ∗ : qIx `∗ αqF β, where α, β ∈ Γ∗}.

Thus, informally, M accepts input x if any of its (nondeterministic) computations
on input x lead to the accepting state qF . There may be computations that do
not lead to acceptance but this is not relevant as long as at least one leads to
acceptance. Of course rejection now means that there is no computation path
that leads to acceptance. (This is entirely analogous to searching for a solution; if
any one attempt succeeds then we have a solution no matter how many attempts
failed beforehand.)

57

Example Consider the machine Mabc with Q = {q0, q1, q2, q3}, qI = q0, qF = q3,
Σ = {a, b, c}, Γ = {a, b, c, b̄}, and with transition relation δ specified by the quin-
tuples (q0, a, q0, a, R), (q0, a, q1, a, L), (q0, a, q1, a, R), (q0, b, q0, b, R), (q0, c, q0, c, R),
(q1, b, q2, b, L), (q1, b, q2, b, R), and (q2, c, q3, c, R). The language Labc accepted by
Mabc is the set of words x ∈ {a, b, c}∗, such that x contains either abc or cba as a
sub-word. Observe that if x /∈ Labc then Mabc has no accepting computations on
input x. Observe, also, that if x ∈ Labc then Mabc has non-accepting computations
on input x, such as

q0bacbab ` bq0acbab ` baq1cbab,

in addition to the accepting computations, such as

q0bacbab ` bq0acbab ` baq0cbab ` bacq0bab

` bacbq0ab ` bacq1bab ` baq2cbab ` bacq3bab.

Exercise A very attractive way to view the set of all possible computation paths
of a nondeterministic Turing machine on a given input is as a tree. The root is
the starting configuration. The children of any vertex labeled by a configuration
C are all possible next moves (if any). Draw the first few levels of the tree for the
example machine given above starting with various inputs.

Nondeterministic TMs are no more powerful that deterministic TMs in terms
of the class of languages that can be recognized.

Theorem 11.2 If a language L is accepted by a nondeterministic Turing machine,
then L is accepted by a deterministic Turing machine.

proof. Suppose M is a nondeterministic TM accepting L. We construct a three-
tape deterministic TM M̂ that also accepts L.

For each state/symbol pair of M , a finite number of possible transitions are
available: number these consecutively, starting at zero. Let r be the maximum
number of transitions available for any state/symbol pair. A computation of M on
input x can be described by a sequence of digits in base r, successive digits specify-
ing the action to be taken in successive steps of the machine M . Not all sequences
will specify a valid computation since, in general, fewer than r nondeterministic
choices will be available at each transition.

The simulating machine M̂ has three tapes. The first contains the input, and
remains unaltered during the computation. The second contains a sequence of
digits in base r; this sequence picks out a particular nondeterministic computation
of M . The third tape is used for the simulation of M . On tape 2, M̂ cycles
through all possible sequences composed of the base r digits: first the sequences of
length 1, then all sequences of length 2, all sequences of length 3, and so on. For

58

each generated sequence of length t, the machine M̂ copies the contents of tape 1
across to tape 3 and simulates M for t steps. Each nondeterministic choice of M is
resolved by consulting tape 2. The head on tape 2 advances one position for every
step of the simulation. If M ever reaches the accepting state then M̂ accepts.

If it is the case that M accepts input x, then M̂ will eventually generate on
tape 2 an appropriate sequence of choices and will itself accept. However, if M
does not accept input x, then no generated sequence on tape 2 will cause M̂ to
accept. �

Note that the simulation employed in the proof of Theorem 11.2 is not very
efficient; the runtime blows up exponentially. Thus the proof of Theorem 11.2
does not imply that a deterministic TM can perform a computation as quickly as
a nondeterministic TM.

§11.3. The language class NP. The nondeterministic TM is not intended to be
a realistic model of computation. Its importance lies in the fact that it allows us
to define a language class, NP, which appears to have great practical significance.

Let M be a nondeterministic TM with input alphabet Σ. If, for all inputs
x ∈ Σn of length n, the machine M makes at most T (n) transitions before halt-
ing, then we say that M is of time complexity T (n). Note that this definition
is consistent with the definition for deterministic machines, which have just one
possible computation on any input. As before, we say that a nondeterministic TM
is polynomial time if it is of time complexity p(n) for some polynomial p. The
class of all languages that are accepted by polynomial-time nondeterministic TMs
is denoted by NP.

Many natural problems belong to the class NP, Sat being a typical example. To
see that Sat ∈ NP, consider the nondeterministic TM M that operates as follows.
Suppose the input to M is a CNF formula φ in the variables x1, x2, . . . , xk. The
machine M sets aside k squares of workspace on its tape. It then writes down,
nondeterministically, a sequence of k binary digits onto the k squares; these digits
are interpreted as a truth assignment to the k variables of φ. M now checks
whether the truth assignment it has just ‘guessed’ is a satisfying assignment to φ.
The checking phase can be carried out in an entirely deterministic fashion: for each
clause, M verifies that at least one literal in the clause is true under the chosen
assignment. It is clear that checking phase can be completed in polynomial time.

As discussed in §11.1, Sat is one of a large class of search problems that are
characterized by the search for a solution within a search space that is potentially
of exponential size. For Sat, the search space is the set of all 2k truth assignments
to the k variables of φ, and the sought-for solution is a satisfying assignment
to φ. The enormous size of the search space may make solutions very difficult to
find. Nevertheless, it is often the case that putative solutions are easy to verify ;
thus, in the case of Sat, it is easy to check whether a given assignment to the

59

variables makes φ true. Naturally occurring search problems that have easily
verified solutions are good candidates for membership in NP.

We can now give a precise formulation to the question raised in §11.1 regarding
näıve search. If there is a language that is in NP but not in P then when deciding
membership for this language we cannot do substantially better than näıve search
in terms of runtime. If on the other hand it turns out that P = NP then problems
like Sat and Clique can be answered in a way that avoids a crude search, i.e.,
there must be some deep structure to these problems which has so far eluded
everybody. The P versus NP question is amongst the most difficult problems of
Computer Science and has resisted solution since the early seventies when it was
first posed. The Clay Mathematics Institute is offering a $1 million prize for the
solution to this problem, see http://www.claymath.org/millennium/P_vs_NP/.

60

