
UG3 Computability and Intractability (2008-2009): Note 10

§10. Computing against the clock. So far, our main concern has been the
classification of problems under two headings: decidable and undecidable. (Actu-
ally, three: semi-decidable corresponds to recursively enumerable.) That is not the
whole story, however. For although a decidable problem is certainly solvable in
principle, it may not be solvable in any realistic sense. That is, the time required
to obtain a solution to the problem may grow so fast, as a function of input size,
that only the smallest inputs can be treated within a reasonable time bound.

This note introduces a division of computational tasks, into ‘tractable’ and
‘intractable’, whose significance appears to be independent of the choice of com-
putational model. We identify a language class P that captures the notion of
computational tractability in an intuitively appealing way. Although P must be
defined relative to a particular machine model (in our case the Turing machine),
most computer scientists believe that the same class would be obtained whatever
reasonable machine model is chosen; indeed this has been proved for many models.

§10.1. The class P. Let M be a Turing machine with input alphabet Σ. If M
halts within T (n) steps on all inputs of length n, then we say that M is T (n)
time bounded, or that M is of time complexity T (n). Consider the Turing machine
Mpalin of Note 3. For an input of length n, the machine Mpalin makes at most
1
2
(n + 1)(n + 2) transitions before halting. (Indeed, for a palindrome of length n,

it makes precisely 1
2
(n + 1)(n + 2) transitions.) Thus, Mpalin is of time complexity

T (n) = 1
2
(n+1)(n+2). Notice that T (n) is simply an upper bound on the number

of transitions made by Mpalin on inputs of length n; there is no requirement that
this number of transitions is actually achieved for all inputs of length n, or indeed
for any input of length n. Thus Mpalin is also of time complexity 3n2, or 3n3, or
even 3n. These statements, although all true, contain diminishing information.

We say that the Turing machine M is polynomial time if M has time complexity
p(n) for some polynomial p. (A polynomial is a function p(n) = adn

d +ad−1n
d−1 +

· · · + a1n + a0, where d is the degree of the polynomial, and the ai are constant
coefficients21.) The machine Mpalin is clearly polynomial time, since its time com-
plexity is described by a polynomial of degree 2. The class of all languages that
are accepted by polynomial-time Turing machines is denoted by P. The language
Lpalin ⊆ {0, 1}∗ consisting of all binary palindromes is a typical member of P. The
class P is intended to capture the notion of computational tractability. We regard
languages outside P as computationally intractable because the time required to
recognize words in these languages grows faster than any polynomial in n.

An important feature of the class P is that it appears to be invariant under
changes in the model of computation. Thus the class of languages that can be

21Strictly speaking d is the degree provided ad 6= 0. The degree is undefined if all coefficients
are 0, i.e., the function always returns 0. This point will not concern us in this course!

50



recognized by a Turing machine in polynomial time appears to be the same as the
class of languages recognized by any other ‘reasonable’ model of computation in
polynomial time. Informally, a model of computation is ‘reasonable’ in this context
if each computational step could be performed by fixed hardware in bounded time.
Note that the RAM model, as it stands, is ‘unreasonable’ because numbers of
arbitrary size can be manipulated in a single computational step. However it is
possible to deal with this point by charging each arithmetic operation according
to the size of numbers involved (e.g., according to the so-called logarithmic cost
criterion).22 It is instructive to compare this invariance of P with the analogous
feature of the class of recursive languages: it also remains invariant under changes
of reasonable model (where ‘reasonable’ now means ‘intuitively computable’).

It is quite reasonable to question the claim that the class P captures the no-
tion of ‘tractability’ if this is to mean ‘practically useful algorithm’. After all an
algorithm that runs in time n1000000 isn’t useful by any criterion. Moreover it can
be proved that there are problems that can be solve in the given time but not in
substantially less, e.g., not in n999999 time (admittedly these are not natural prob-
lems). It is more accurate to view the class P as an idealization, or approximation,
of the notion of ‘practically useful’. The fact is that unless we are prepared to
tie ourselves down to a specific model, then we have no choice but to allow all
polynomial-time problems in our class. However, even if one ignores the tractabil-
ity issue, the class P is still of immense interest owing to the observation of the
preceding paragraph. We will see another important reason for focusing on P later
on when we consider non-deterministic computation and its relation to searching.

§10.2. Polynomial-time reductions. To demonstrate that a language L is
tractable, i.e., is in the class P, it is enough to exhibit a polynomial-time Turing
machine that accepts L. For many languages L ∈ P this can be done without great
difficulty. But to demonstrate that a language L is intractable, i.e., is outside P,
it is necessary to prove that no polynomial-time Turing machine accepts L. The
latter task seems much more difficult, since (assuming L is recursive) the set of
Turing machines that accept L contains machines that are arbitrarily intricate.

However there is a simple way to compare the computational tractability of
languages, and this involves a refinement of the notion of reduction introduced in
Note 8. Let L1 and L2 be languages over alphabets Σ1 and Σ2, respectively. A
polynomial-time reduction from L1 to L2 is a function f : Σ∗

1 → Σ∗
2 satisfying:

(a) x ∈ L1 ⇐⇒ f(x) ∈ L2, for all x ∈ Σ∗
1;

(b) there is a polynomial-time Turing machine transducer that computes f .

22A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley 1974, p. 12.

51



If a polynomial-time reduction from L1 to L2 exists then we say that L1 is
polynomial-time reducible to L2, and write L1 ≤P L2. The reader will proba-
bly have guessed that polynomial-time reductions play a similar role in complexity
theory (the theory of the computationally tractable) as unrestricted reductions
do in computability theory. Before exploring this role in detail, we consider an
example of a polynomial-time reduction.

§10.3. Satisfying assignments and cliques. We have seen that formal
languages and decision problems offer different views of the same thing. The
language view is more convenient when developing the theoretical basis of the
subject; the decision problem view is more convenient when discussing practical
applications. From now on, we shall move freely between the two views, and not
distinguish in our notation between languages and decision problems.

Here are two problems. The first, Sat, is taken from propositional logic:

Instance: A Boolean formula φ in conjunctive normal form (CNF).23

Question: Is there an assignment of truth values to the variables of φ that
makes φ true?

The second, Clique, is a problem from graph theory:

Instance: An undirected graph G = (V, E), and an integer k.

Question: Does G possess a k-clique? (A k-clique is a subset U ⊆ V of
size k, such that every pair of distinct vertices in U is joined by an edge.)

Expressed as languages, Sat is the set of encodings of satisfiable formulas in CNF,
and Clique is the set of encodings of pairs 〈G, k〉 where G is an undirected graph,
k is a natural number, and G contains a k-clique. From now on we shall not be too
explicit about the encodings used; any reasonable encoding will do. For example,
graphs might be specified as adjacency matrices in row-major order, and natural
numbers presented in binary notation.

We shall demonstrate that Sat ≤P Clique by exhibiting an explicit polynomial-
time reduction from one problem to the other. Note that the two problems are
quite different in appearance, so it is surprising at first sight that they should be
related in this way. The reduction is required, by condition (a), to map each CNF
Boolean formula φ to an undirected graph G and integer k such that

φ is satisfiable ⇐⇒ G has a k-clique. (∗)

Let φ = C1∧C2∧· · ·∧Cr, where each clause Ci is given by Ci = (αi1∨αi2∨· · ·∨αi,si
),

and each αij is a literal. Say that a pair of literals is complementary if it consists

23Recall that a formula is in CNF if it is a conjunction of clauses, where each clause is a
disjunction of literals, and each literal is a variable or its negation.

52



of the negated and un-negated forms of the same variable. (E.g., x and ¬x form
a complementary pair.) We introduce distinct vertices vij for 1 ≤ i ≤ r and
1 ≤ j ≤ si (with the intention that the vertex vij corresponds to the literal αij

24.)
Our reduction maps the formula φ to the graph G = (V, E) with

V = {vij | 1 ≤ i ≤ r and 1 ≤ j ≤ si}
E = {{vij, vhk} | i 6= h, and the pair αij, αhk is not complementary}.

Informally, two vertices are connected by an edge if and only if the corresponding
literals occur in different clauses in φ and are not complementary. The integer k—
which forms part of each instance of Clique—is set equal to r, the number of
clauses in φ. This completes the description of the reduction.

We now verify that the reduction satisfies condition (∗). First, consider the
forward implication. Take any assignment of truth values to the variables of φ
that makes φ true. Under this assignment, at least one literal in each clause of φ
will be made true; select one such literal from each clause. The k vertices of G
that correspond to this choice of literals must form a k-clique. (Since all k literals
are true, no pair of them can be complementary.)

Now, consider the reverse implication. Suppose that G has a k-clique. Consider
the k literals of φ corresponding to the k vertices of the clique. Each of the k
literals must occur in a different clause of φ; moreover, no pair of the k literals is
complementary. Therefore, there is an assignment of truth values to the variables
of φ which makes all k literals, and hence the whole formula φ, true.

Finally, we must check condition (b): that the reduction can be computed in
polynomial time. To do this formally, we need to be precise about the encodings
used for formulas and graphs. But without going that far, it should be clear
that reduction requires no great computational effort. Suppose that φ contains m
literals. The main work is to construct the adjacency matrix of G. Assign sequence
numbers in the range [0, m− 1] to the literals of φ. Then make the (i, j) entry of
the adjacency matrix 1 if the literals with sequence numbers i and j are in different
clauses and are not complementary, and 0 otherwise. The whole matrix may be
constructed by embedding this simple test within nested i- and j-loops. It is clear
that the whole procedure can be implemented to run in polynomial time. �

Exercise Sketch the graph G obtained by applying the above reduction to the
formula

φ = (x ∨ ¬y) ∧ (¬x ∨ ¬y ∨ z) ∧ (y ∨ z) ∧ (¬y ∨ ¬z).

Take a satisfying assignment to φ and from it construct a corresponding 4-clique
in G. Now take a different 4-clique in G and construct a corresponding satisfying
assignment to φ.

24There is a subtle point here: it is possible that, e.g., the literals α12 and α32 are the same,
however the vertices v12 and v32 are distinct.

53


