
UG3 Computability and Intractability (2009-2010): Note 9

§9. The fall-out: part 2. In Note 7 we encountered a naturally defined
language, namely Lhalt, which is not recursive. In this note, we explore a little
further, and discover languages that are not even recursively enumerable (r.e.). In
a sense, a non-r.e. language is even ‘harder’ than Lhalt. For although there is no
Turing machine that accepts the language Lhalt and halts on all inputs, there is at
least a machine that accepts Lhalt provided we do not expect a definite ruling on
words outside Lhalt. When a language is not r.e., even such a partial solution is
denied.

§9.1. A language that is not recursively enumerable. Suppose L ⊆ Σ∗ is a
language over Σ. The complement of L is the language L = Σ∗−L; thus a word is
in L if it is not in L, and vice versa. We open with some elementary facts about
languages and their complements.

Theorem 9.1 The complement of a recursive language is recursive.

proof. Let L be any recursive language, and M a Turing machine that accepts L
and halts on all inputs. We construct a Turing machine M that recognizes L and
halts on all inputs.

All that is necessary is to interchange the roles of acceptance and rejection.
Let Q be the state space of M , and let qF ∈ Q be the accepting state of M .
To form M from M , augment Q by a single state qF , which becomes the new
accepting state of M . The old accepting state qF now becomes a trap: after enter-
ing the state, M immediately halts without accepting. For all state/symbol pairs
(q, s) on which the transition function of M is undefined, introduce a quintuple
(q, s, qF , s, R) into the transition function of M . Observe that M accepts if M
rejects, and vice versa. �

Theorem 9.2 A language L is recursive if and only if both L and L are recursively
enumerable.

proof. The ‘only if’ part is immediate: by Theorem 9.1, both L and L are
recursive and hence recursively enumerable.

For the ‘if’ part, let M and M be Turing machines that accept languages L
and L (but which do not necessarily halt on all inputs). We construct a two-tape

Turing machine M̂ that accepts L and halts on all inputs. In an initialization
phase, M̂ shunts the input word x right one place, inserts a special end-of-tape
symbol in the resulting gap, and copies the entire contents of tape 1 across to
tape 2. Having returned both tape heads to the squares immediately to the right
of the end-of-tape symbols, the simulation proper commences.

46

The machine M̂ simulates, move for move and concurrently, the computations
of M and M on input x. The computation of M proceeds on tape 1, and that of M
on tape 2. The presence of the end-of-tape markers enables M̂ to avoid crashing
if the tape head of either machine falls off the end of the tape. Since the input x
is either in L or L, one of the simulated machines must eventually accept. At that
point M̂ can pronounce on whether or not x is in the language L. �

Since Lhalt is r.e. but not recursive, it follows from Theorem 9.2 that the comple-
ment of Lhalt is not r.e. Now consider the language

Lloop = {〈M〉$x | M does not halt on input x}.

Note that the complement of Lhalt is the union of Lloop and Ldross, where Ldross is
the set of all badly formatted problem instances (i.e., all words in {0, 1, $}∗ that
are not of the form 〈M〉$x).

The language Lloop is our first example of a ‘naturally defined’ language that
is not recursively enumerable.

Corollary 9.1 The language Lloop is not recursively enumerable.

proof. Given a Turing machine accepting the language Lloop, it would be straight-
forward to construct a Turing machine accepting the complement of Lhalt. (The
new machine merely adds a preprocessing phase that traps and accepts elements
of Ldross.) But we know that the complement of Lhalt is not r.e. �

§9.2. The uniform halting problem (reprise). Recall that the uniform
halting problem asks of a Turing machine whether it halts on all inputs. Intuitively,
this seems a somewhat ‘harder’ problem than the question of whether a Turing
machine halts on a specified input. In a sense this is the case: whereas Lhalt is
r.e., Luhalt is not. However the fact the Luhalt is not r.e. cannot be deduced from
Theorem 9.2, since the complement of Luhalt is not r.e. either. The language Luhalt

fails to be r.e. for a more interesting reason. First, let us observe an elementary
fact about reductions.

Theorem 9.3 Suppose L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 are languages. If L1 is reducible
to L2, and L2 is recursively enumerable, then L1 is also recursively enumerable.

proof. The proof exactly mirrors the proof of Theorem 8.1, and is left as a simple
exercise. �

We will often use this theorem in the contrapositive sense, i.e., if L1 is reducible
to L2, and L1 is not recursively enumerable, then L2 is also not recursively enu-
merable.

47

Theorem 9.4 The language Luhalt is not recursively enumerable.

proof. We shall exhibit a reduction from Lloop to Luhalt; the result will then
follow from Corollary 9.1 and Theorem 9.3.

Let 〈M〉$x be a typical instance of the ‘looping problem’. We shall demonstrate
how to construct an instance 〈Mx〉 of the uniform halting problem that satisfies
the following condition:

M loops on input x ⇐⇒ Mx halts on all inputs. (1)

In fact, we shall construct a two-tape machine M ′
x that has the appropriate be-

haviour, and then use earlier results (Lemma 4.2 and Lemma 7.1) to transform
M ′

x into an equivalent binary Turing machine Mx satisfying (1).
On input w ∈ {0, 1}∗ (which we recall is presented on tape 1), M ′

x operates as
follows.

(a) On tape 2, M ′
x writes a special end-of-tape symbol followed by the word x.

Since x is a fixed word, this procedure can be hard-wired into the finite
control of M ′

x, just as in the proof of Theorem 8.2.

(b) M ′
x uses tape 1 as a binary counter, interpreting the initial contents of the

tape as the initial value of the counter. On tape 2, M ′
x performs a simulation

of the computation of M on input x. On each step of the simulation, M ′
x

decrements the counter on tape 1. The presence of the end-of-tape symbol
enables M ′

x to trap any situation in which M halts.

(c) The halting criterion for M ′
x is as follows. If the simulation of M is still in

progress when the counter reaches zero, then M ′
x halts (say, rejecting). If the

simulation of M terminates before the counter reaches zero, then M ′
x enters

an infinite loop.

If M does not halt on input x then M ′
x will halt after W steps of the simulation,

where W is the natural number represented by the binary input word w. However,
if M does halt on input x then M ′

x will loop on all sufficiently large inputs: simply
take w to be the binary representation of any number that is larger than the
number of steps taken by M on input x.

Now transform the machine M ′
x just constructed into an equivalent binary

Turing machine Mx. It should be clear that the resulting machine Mx satisfies (1).
Finally, observe that (1) asserts that the function mapping 〈M〉$x to 〈Mx〉 is a
reduction from Lloop to Luhalt. By Corollary 9.1 and Theorem 9.3, the language
Luhalt is not recursively enumerable. �

Exercise Show that the complement of Luhalt is not recursively enumerable.
[Hint: this is an easier proof than the one above. Refer to the proof of Theorem 8.2.]

48

§9.3. Proof systems for the uniform halting problem. The statement that
Luhalt is not r.e. is clearly stronger than the statement that Luhalt is not recursive.
The stronger statement has a consequence which we shall now investigate.

Suppose we have a system in which it is possible to conduct formal proofs about
the behaviour of Turing machines. That is, we have a formal language for making
assertions about Turing machines, and a collection of axioms and inference rules.
We shall make only two assumptions about this system:

(a) The language is able to express assertions of the form ‘machine M halts on
all inputs’, where M is an arbitrary binary Turing machine.

(b) Proofs are machine checkable. By this we mean that there exists a Turing
machine Mcheck that meets the following specification. Let M be a binary
Turing machine, and π be a word over the alphabet {0, 1}. On input 〈M〉$π,
the machine Mcheck is required to accept if π encodes a valid proof of the
assertion ‘M halts on all inputs’, and to halt without accepting otherwise.

With these assumptions, it is easy to show that the proof system cannot be both
sound, and complete with respect to assertions of the form ‘machine M halts on
all inputs’. That is, it is either:

Unsound: There are machines that can be proved to halt on all inputs, which do
not in reality halt on all inputs; or

Incomplete: There are machines that halt on all inputs, which cannot be proved
to halt on all inputs (recall Gödel’s result discussed in §1.7).

For suppose, to the contrary, that a proof system exists that is both sound
and complete. Then we could construct a multi-tape Turing machine Muhalt that
accepts the language Luhalt. On input 〈M〉, the machine Muhalt operates as follows.
On one tape, Muhalt cycles through all binary words π, using Mcheck to determine
whether π encodes a valid proof of the assertion ‘M halts on all inputs’. If Muhalt

ever discovers such a proof then it immediately halts and accepts. To cycle through
all proofs, Muhalt simply enumerates all binary strings on one of its tapes, one by
one, in order of increasing length. (For a particular length n, Muhalt starts with
the string 0n and increments it by one (in binary) to get the next string until the
string 1n is reached.) The contents of this tape form a binary word that can be
interpreted as the encoding of a putative proof π. On finding that a word π does
not encode a valid proof of the assertion, Muhalt generates the next string and tries
again.

If the proof system is sound and complete, the machine Muhalt will eventually
find a valid proof precisely if M halts on all inputs. Thus Muhalt accepts the
language Luhalt. But Theorem 9.4 denies the existence of such a machine.

49

