
UG3 Computability and Intractability (2009-2010): Note 8

§8. The fall-out: part 1. Using the undecidability of the halting problem as
a starting point, it is possible to demonstrate that many other naturally defined
problems are undecidable. Before embarking on such a programme, we shall equip
ourselves with an important tool.

§8.1. Reductions. Let L1 and L2 be languages over alphabets Σ1 and Σ2,
respectively. A reduction from L1 to L2 is a function f : Σ∗

1 → Σ∗
2 such that:

(a) x ∈ L1 ⇐⇒ f(x) ∈ L2, for all x ∈ Σ∗
1;

(b) there is a Turing machine transducer that computes f .

In other words the question ‘is x ∈ L1?’ has the same answer as the question ‘is
f(x) ∈ L2?’; moreover we have an algorithm for transforming the first question
to the second one. If a reduction from L1 to L2 exists then we say that L1 is
reducible to L2. Reductions play an important role in proofs of undecidability,
which is clarified in the following result.

Theorem 8.1 Suppose L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 are languages. If L1 is reducible
to L2, and L2 is recursive, then L1 is also recursive.

proof. Since L2 is recursive, there is a Turing machine M2 that accepts L2 and
halts on all inputs. Further, since L1 is reducible to L2, there is a function f :
Σ∗

1 → Σ∗
2 satisfying conditions (a) and (b) above. We shall use these observations

to construct a machine M1 that accepts the language L1 and halts on all inputs.
It will follow that the language L1 is recursive.

On input x ∈ Σ∗
1 the machine M1 operates as follows. First, M1 places a special

end-of-tape marker on the leftmost square of its tape, shunts the input x right one
place, and returns to the square immediately to the right of the marker. Then M1

computes f(x) ∈ Σ∗
2 leaving the result on the tape; that this can be done is assured

by condition (b) above. Finally, having returned the tape head to the square
immediately to the right of the end-of-tape marker (having the marker means that
we can avoid falling off the left end of the tape at this stage), M1 behaves exactly
like M2. By condition (a), the machine M1 accepts the language L1. Further,
since M2 halts on all inputs, so also does M1. �

Note that the proof is just a Turing machine version of the following simple idea:
first pre-process the input x by computing f(x), then run the decision procedure
for L2 (with input f(x)).

An equivalent statement of Theorem 8.1 is that if L1 is reducible to L2, and L1

is not recursive, then neither is L2. It is generally in this form that we shall use
the theorem. We know that Lhalt is not recursive; we will extend our knowledge

42

to show that other other languages are non-recursive by reducing Lhalt to them.
This will then give us more examples as starting points for reductions.

§8.2. The uniform halting problem. The uniform halting problem is as follows:

Instance: A binary Turing machine M .

Question: Does M halt on all inputs x ∈ {0, 1}∗?

Alternatively, we may view the uniform halting problem as the task of recognizing

Luhalt = {〈M〉 | M halts on all inputs x ∈ {0, 1}∗}.

It seems likely, given our experience with the halting problem itself, that the
uniform halting problem is undecidable. However, since it is conceivable that
determining whether a machine halts in general is easier than deciding whether
it halts on a particular input, we really ought to prove that the uniform halting
problem is undecidable.

Theorem 8.2 The language Luhalt is not recursive.

proof. We shall exhibit a reduction from Lhalt to Luhalt.
Consider a typical instance 〈M〉$x of the halting problem. (We assume that

the instance has the appropriate format, i.e., that there is a single dollar symbol
and the binary word to the left of the dollar symbol is a valid encoding of a Turing
machine.) Recall that the halting problem asks the question: “Does M halt on
input x?” We now construct a binary Turing machine Mx with the property that

M halts on input x ⇐⇒ Mx halts on all inputs. (1)

The implementation strategy is simple. The machine Mx compares its input w ∈
{0, 1}∗ with the word x: if w 6= x then Mx immediately halts; if w = x then Mx

returns its head to the leftmost square of the tape and then behaves exactly like M .
In more detail, Mx is constructed from M as follows. Let x = x0x1x2 · · ·xn−1,

where each xi is either 0 or 1. First, augment the states of M by adding 2n
new states q′0, q

′
1, . . . , q

′
n−1, and q′′1 , q

′′
2 , . . . , q

′′
n. Then extend the transition func-

tion to these new states by adding the right-sweeping quintuples (q′0, x0, q
′
1, x0, R),

(q′1, x1, q
′
2, x1, R), . . . , (q′n−2, xn−2, q

′
n−1, xn−1, R), (q′n−1, xn−1, q

′′
n, xn−1, R), and the

left-sweeping quintuples (q′′n, b̄ , q′′n−1, b̄ , L), (q′′n−1, xn−1, q
′′
n−2, xn−1, L), . . . , (q′′2 , x2,

q′′1 , x2, L), (q′′1 , x1, qI , x1, L), where qI is the initial state of M . Note that, on in-
put w, the machine Mx halts and rejects if w 6= x, and operates exactly like M if
w = x. Thus the behaviour of Mx satisfies (1). Note also that 〈Mx〉 (the encoding
of Mx) is easy to compute given 〈M〉 (the encoding of M) and x.

Now, equivalence (1) may be rewritten

〈M〉$x ∈ Lhalt ⇐⇒ 〈Mx〉 ∈ Luhalt,

43

whence it is clear that the function f that maps each word of the form 〈M〉$x to
the word 〈Mx〉 is a reduction from Lhalt to Luhalt.

20 The result then follows from
Theorem 8.1 together with the fact that Lhalt is not recursive (see Note 7). �

§8.3. The non-emptiness problem for r.e. languages. For any Turing
machine M , let L(M) denote the language accepted by M . The non-emptiness
problem for r.e. languages is the following:

Instance: A binary Turing machine M .

Question: Is the language L(M) non-empty?

As before, the problem can be recast as the task of recognizing an appropriately
defined language, in this instance Lne = {〈M〉 | L(M) 6= ∅}.

Theorem 8.3 The language Lne is not recursive.

proof. Again, we employ a reduction from the language Lhalt. Consider a typical
instance 〈M〉$x of the halting problem. We demonstrate how to construct a Turing
machine Mx with the property that

M halts on input x ⇐⇒ L(Mx) 6= ∅. (2)

First of all note that we can ensure that M does not fall off the left hand end
of the tape (just construct an equivalent machine that avoids this behaviour).
Now, construct a machine M ′ which is a very simple modification of M . For
all state/symbol pairs (q, s) on which the transition function of M is undefined,
introduce a new tuple (q, s, qF , s, R) into the specification of the transition function
of M ′. Then M ′ behaves exactly like M until such time as M would reject; at that
point M ′ accepts. Thus

M halts on input x ⇐⇒ M ′ accepts input x.

We are now in a position to construct Mx itself. The machine Mx compares
its input w ∈ {0, 1}∗ with the word x: if w 6= x then Mx immediately halts and
rejects; if w = x then Mx returns its head to the leftmost square of the tape
and proceeds to behave exactly like M ′. Note that Mx bears exactly the same
relation to M ′ in this proof as its namesake did to M in the proof of Theorem 8.2.
Therefore, exactly the same detailed construction can be employed. Note also that
the machine Mx has property (2).

20For this statement to be entirely correct, one would need to extend f to badly formatted
instances of the halting problem. This could be achieved by mapping each badly formatted
instance to a binary word that is not a member of Luhalt. This kind of unedifying technical
detail can safely be swept under the carpet.

44

Let f be the function that maps each instance 〈M〉$x of the halting problem
to the instance 〈Mx〉 of the non-emptiness problem. Observe that (2) asserts
that the function f is a reduction from Lhalt to Lne. The result now follows from
Theorem 8.1 and the fact that Lhalt is not recursive. �

§8.4. Number theory: a simple first-order theory. Consider sentences
formed from the following entities, according to ‘appropriate syntactic rules’, with
brackets being used to resolve ambiguities.

(a) the constants 0 and 1;

(b) variables (which we shall denote by lower case roman letters);

(c) the binary arithmetic operators + and ×;

(d) the relational operators < and =;

(e) the logical connectives ∧, ∨, and ¬;

(f) the quantifiers ∃ (there exists) and ∀ (for all).

(We shall not pause to say what the ‘appropriate syntactic rules’ are, but instead
leave them to the imagination.) Each syntactically valid sentence can be inter-
preted as a statement about the natural numbers. As long as we stipulate that
sentences should not contain free variables (i.e., every variable is bound by some
quantifier), every sentence so interpreted will either be true or false.

Thus, for example, ∀x ∃y [x < y] is the true assertion that for every natural
number there is a greater natural number, whereas ∀x ∃y [x = y + y] is the false
assertion that every natural number is even. These are very simple examples,
but even with very few symbols it is possible to make non-trivial assertions. For
example, suppose we allow prime(x) as a macro for the predicate ∀u ∀v [(u =
1) ∨ (v = 1) ∨ ¬(u × v = x)], which asserts that x is a prime number. Then
the sentence ∀x ∃y [(x < y) ∧ prime(y)] asserts that there are an infinity of prime
numbers, and the sentence ∀x ∃y [(x < y) ∧ prime(y) ∧ prime(y + 1 + 1)] asserts
that there are an infinity of ‘prime pairs’. Note that the latter sentence is nothing
more than a conjecture: it is not known whether the sentence is true or false!

Let Lnum be the set of true sentences in the above ‘theory of numbers’. Clearly,
it would be of great interest to have an effective procedure that decides for any
sentence in this ‘theory of numbers’ whether it is true or false. The final result of
this note, a consequence of Kurt Gödel’s theorem (1931) discussed in §1.7, denies
the existence of such a procedure.

Theorem 8.4 The language Lnum is not recursive.

Exercise Prove that there are infinitely many primes.

45

