
UG3 Computability and Intractability (2009-2010): Note 7

§7. The halting problem. We now revisit the discussion of §1.4, using the
tools we have built up in the meantime. We will develop rigorous versions of the
ideas and proofs that we saw earlier. The technical arguments should always be
seen in the light of the intuition provided by the earlier informal arguments.

Recall that a binary Turing machine is one that has input alphabet Σ = {0, 1}
and tape alphabet Γ = {0, 1, b̄}. In Note 6 it was claimed that we lose noth-
ing in generality by restricting our attention to binary Turing machines. Before
proceeding further we should substantiate that claim.

Lemma 7.1 For every Turing machine M with input alphabet {0, 1}, there is a

binary Turing machine M̂ that is equivalent to M : on every input, M̂ halts if
and only if M halts, and M̂ accepts if and only if M accepts. (Note that the tape
alphabet of M is unrestricted.)

proof. Suppose the tape alphabet of M is Γ, and let k = d lg |Γ| e. The basic
idea of the proof is to encode each element of Γ (other than the blank symbol) as a
binary string of length k. The blank symbol itself will be encoded as a string of k
blank symbols19. Thus, we can imagine the tape of M̂ as being divided into k-
square blocks, each of which represents a single tape square of the machine M . We
assume that the symbol 0 receives code 0k, and the symbol 1 receives code 0k−11.

The first action of M̂ is to encode its input, using the substitutions 0 → 0k

and 1 → 0k−11. To encode a single symbol on the tape, M̂ positions its head
over that symbol and performs the following operation k− 1 times: shift the tape
contents, from the tape head up to the first blank symbol, right one place, and fill
the resulting gap with the symbol 0. To encode the entire input, M̂ simply repeats
this procedure for each symbol of the input word. (The first symbol of the input

must be marked in some way so that M̂ can later return its head to the leftmost
square of the tape in readiness for the simulation proper.)

The simulation of M can now commence in earnest. To simulate a single move
of M , the machine M̂ proceeds as follows. First, M̂ performs a sequence of k − 1
steps in which it remembers the k symbols in the current block (the block that
encodes the scanned symbol of M). This symbol, together with the current state

of M (which M̂ has remembered in its finite control), determines the transition

of M . In a further 2k−1 steps, M̂ can overwrite the current block with an encoding
of the new symbol of M , move to the adjacent block (left or right as appropriate),
and remember the new state of M in its finite control. If M ever accepts then so
does M̂ ; if M ever sticks then so does M̂ . �

19We assume, without loss of generality, that |Γ| ≥ 2 so that k ≥ 1. The case |Γ| = 1 means
that the input alphabet Σ is empty! Alternatively we can take k = max(1, d lg |Γ| e).

38

In Note 6, a technique was presented for encoding binary Turing machines as
words over the alphabet {0, 1, B, *}. (That encoding did not specify the final
state; this issue may be dealt with by insisting that the final state always receives
the binary code for 1.) By replacing each of these four symbols by binary codes
according to the correspondences 0→ 00, 1→ 01, B→ 10, and *→ 11, it is clear
that we can encode binary Turing machines as words over the alphabet {0, 1}. The
point here is that (encodings of) Turing machines and their inputs are formally
identical objects: words over the alphabet {0, 1}. (Of course a modern digital
computer displays the same phenomenon; programs and data are all represented
by suitably formatted sequences of bits.). We shall use the notation 〈M〉 to stand
for the binary encoding of machine M .

The halting problem is the following:

Instance: A binary Turing machine M , and an input x ∈ {0, 1}∗.
Question: Does M halt on input x?

This way of presenting a decision problem as a yes/no question is intuitively ap-
pealing, but for complete precision we may re-express the halting problem as a
problem in language recognition. Define the language Lhalt ⊂ {0, 1, $}∗ by

Lhalt = {〈M〉$x | x ∈ {0, 1}∗ and M halts on input x}.

Thus, a typical word in the language Lhalt is formed from a pair of binary sub-words
separated by a dollar symbol; the first sub-word is interpreted as the encoding of
a Turing machine M , and the second as an input x to that machine. A word with
the appropriate format is deemed to be a member of Lhalt if M halts on input x.
Notice that many words in {0, 1, $}∗ are excluded from Lhalt for the trivial reason
that they have the wrong format: the number of dollar symbols is other than one,
or the first binary word is not the encoding of a valid Turing machine (of course
it is a simple matter to recognize such excluded words).

Lemma 7.2 The language Lhalt is recursively enumerable.

proof. In fact Lhalt is accepted by a Turing machine M ′
u which is only a slight

modification of the universal Turing machine Mu of Note 6. On input w ∈
{0, 1, $}∗, the machine M ′

u first checks that w is of the form w = 〈M〉$x for some
valid Turing machine M . If the format of w is incorrect, M ′

u immediately halts
without accepting; otherwise, M ′

u simulates the computation of M on input x and
accepts if the computation terminates. �

Unfortunately, the machine M ′
u is not a convincing solution to the halting problem:

if the machine M does not halt on input x then M ′
u simply loops forever, never

39

providing a definite answer. What we really seek is a machine that halts on all
inputs, accepting if M halts on input x, and rejecting if M does not halt on input x.

We say that a language L is recursive if L is accepted by a Turing machine that
halts on all inputs. Then, a yes/no problem is decidable if its associated language
(the set of all yes-instances) is recursive, and undecidable otherwise. The question
of whether there exists an effective solution to the halting problem can thus be
phrased in two ways: (i) is the halting problem decidable? (ii) is the language Lhalt

recursive? These are equivalent, but the latter is more exact since the language
Lhalt was precisely defined, whereas the statement of the halting problem left open
the detailed encoding of problem instances. The decision problem (i.e., yes/no
problem) view is convenient precisely because it omits this often unnecessary detail.

The theorem which follows puts the discussion of §1.4 on a rigorous footing
and dashes all hope of an effective solution to the halting problem. It is the most
important result in the Computability and Intractability module.

Theorem 7.1 The language Lhalt is not recursive.

proof. We shall assume to the contrary that Lhalt is recursive, and derive a
contradiction.

So let M be a Turing machine that accepts the language Lhalt and halts on all
inputs. First we observe that there is a Turing machine M ′, with input alphabet
{0, 1, $}, which has the following behaviour:

M ′ halts on input x ⇐⇒ M rejects input x. (1)

The machine M ′ is obtained from M by replacing the accepting state of M by a
non-accepting ‘looping state’. Once M ′ enters the looping state, it continues in
that state for ever. The behaviour of M ′ is exactly the same as M except that,
at the very point that M would accept its input, M ′ enters an infinite loop. Thus
the behaviour of M ′ satisfies (1).

Now observe that there is a Turing machine M ′′, with input alphabet {0, 1},
which behaves as follows:

M ′′ halts on input x ⇐⇒ M rejects input x$x. (2)

Again, the machine M ′′ is a simple modification of the previous machine M ′.
When presented with input x, the machine M ′′ duplicates the input to produce a
tape that reads x$x. Then M ′′ positions its head over the leftmost tape square
and behaves exactly like M ′. Since M ′ satisfies (1), it must be the case that M ′′

satisfies (2).
Using Lemma 7.1, we may transform M ′′ into an equivalent binary Turing

machine. Once this is done, we may legitimately run M ′′ on its own description
〈M ′′〉. What happens if we do this? From (2) we see immediately that

M ′′ halts on input 〈M ′′〉 ⇐⇒ M rejects input 〈M ′′〉$〈M ′′〉.

40

We now have the required contradiction. On the one hand, if M ′′ halts on in-
put 〈M ′′〉 then M rejects 〈M ′′〉$〈M ′′〉, which is a contradiction since 〈M ′′〉$〈M ′′〉 ∈
Lhalt and M is supposed to accept the language Lhalt. On the other hand, if M ′′

does not halt on input 〈M ′′〉, then M accepts 〈M ′′〉$〈M ′′〉, which is again a con-
tradiction, since 〈M ′′〉$〈M ′′〉 /∈ Lhalt. We are therefore forced to reject our initial
assumption, which was that Lhalt is recursive. �

An interesting feature of the above proof is its constructive nature. Suppose a soft-
ware company came to you with a Turing machine M , claiming that it ‘solved’ the
halting problem. You could immediately construct a problem instance on which M
is guaranteed to fail. This counterexample is simply the instance 〈M ′′〉$〈M ′′〉,
where M ′′ is constructed from M by the procedure described in the proof. (It is
important to observe, in this context, that Lemma 7.1, too, is constructive.) Of
course such a company is more likely to offer you a program written in a high
level language but the same construction applies (as we saw in §1.4; indeed the
observation follows from the Theorem together with Turing’s thesis).

§7.1. An explosive function. Suppose M is a binary Turing machine and
x ∈ {0, 1}∗ an input. If M halts on input x, let T (M, x) denote the number of
transitions made by M on input x before halting. If M does not halt on input x,
then T (M, x) is undefined. Define the function f : N → N by

f(n) = max {T (M, x) | M halts on input x, and 〈M〉$x has length n}.

For completeness, set f(0) = 0. Note that the function f is perfectly well defined.
Now suppose that there is a Turing machine transducer that computes the

function f(n). Then it would be possible to construct a Turing machine Mhalt

that accepts the language Lhalt, and halts on all inputs. The proposed machine
Mhalt has two tapes. On input 〈M〉$x, the machine Mhalt writes n, the length
of the input, on its second tape. It computes f(n), leaving the answer on its
second tape. Then Mhalt proceeds to simulate, on its first tape, the computation
of M on input x; after each step of the simulation, Mhalt decrements the counter
on its second tape. If the simulation terminates before the counter reaches zero,
then Mhalt accepts its input; if the simulation is still in progress when the counter
reaches zero, then Mhalt halts without accepting. Observe that if M has made f(n)
transitions without halting, then M will never halt.

But the language Lhalt is not recursive, and the machine Mhalt cannot exist. So
we must discard our assumption that the function f is computable. Now suppose
that f̂ : N → N is any function that dominates f , i.e., that satisfies f̂(n) ≥ f(n)
for all n. The argument used above to establish that f is not computable applies
equally to the function f̂ ; thus we deduce that no function which dominates f can
be computable. Stated more dramatically, the function f grows faster than any
computable function!

41

