UG3 Computability and Intractability (2009-2010): Note 6
§6. Universal Turing machines. The quality that distinguished the first digital computers ${ }^{18}$ from all previous machines was flexibility. By placing the operation of the machine under the control of a program, the digital computer could be adapted to a wide range of applications.

Until now, we have thought of a Turing machine as being a fixed piece of hardware performing a specialized function. However, if the Turing machine really is a sound model of computation, it should be possible to demonstrate that it can act as a stored program machine, where the program is regarded as an input, rather than hard-wired. That is the purpose of this note. We shall construct a Turing machine M_{u} that takes as input a description of a Turing machine M and an input word x, and simulates the computation of M on input x (cf. the program descriptions in $\S 1.3$ of Note 1). A machine such as M_{u} that can simulate the behaviour of an arbitrary Turing machine is called a universal Turing machine.

To simplify our task, we shall make two assumptions about the machine M that the universal machine is required to simulate. The more significant simplification is that the input and tape alphabets of M are fixed in advance; specifically the input alphabet of M is $\Sigma=\{0,1\}$, and the tape alphabet is $\Gamma=\{0,1, \hbar\}$. We shall refer to such a machine as a binary Turing machine. The less significant simplification is that we do not allow M the luxury of a final state. Instead, we assume the existence of some other criterion for acceptance; for example, we might agree that M has accepted its input if M gets stuck in a certain state.
\S 6.1. Encoding Turing machines. Let $M=\left(Q, q_{I}, \delta\right)$ be a Turing machine of the above form; M is simply a triple because Σ, Γ, and \hbar are fixed in advance, and the final state is absent. In order to present M as an input to the universal machine M_{u}, it is first necessary to encode M as a word over some fixed alphabet. The rules (a)-(e) that follow describe a suitable encoding of M as a word over the alphabet $\{0,1, B, *\}$.
(a) Encode the states of M as elements of $\{0,1\}^{k}$, where k is some suitably chosen integer, e.g., $k=\lceil\lg |Q|\rceil$. We insist that the initial state q_{I} receives code 0^{k}, but otherwise the assignment of codes to states is arbitrary.
(b) Encode the tape symbols 0,1 , and \hbar as 0,1 , and B, respectively. (The point here is that the true blank symbol \hbar must not appear in the encoding.)
(c) Encode the directions left and right by 0 and 1, respectively.
(d) Recall that the transition function δ of M may be viewed a set of quintuples. Encode a quintuple ($q, s, q^{\prime}, s^{\prime}, d$) as a string $\langle q\rangle\langle s\rangle\left\langle q^{\prime}\right\rangle\left\langle s^{\prime}\right\rangle\langle d\rangle$ of length $2 k+3$;

[^0]here $\langle q\rangle,\langle s\rangle,\left\langle q^{\prime}\right\rangle,\left\langle s^{\prime}\right\rangle$, and $\langle d\rangle$ are the codes for $q, s, q^{\prime}, s^{\prime}$, and d, as defined in rules (a)-(c) above.
(e) Suppose that the transition function δ is specified by the m tuples t_{0}, t_{1}, \ldots, t_{m-1}. Encode the machine M itself as the word
$$
\langle M\rangle=\left\langle t_{0}\right\rangle *\left\langle t_{1}\right\rangle *\left\langle t_{2}\right\rangle * \cdots *\left\langle t_{m-1}\right\rangle,
$$
where $\left\langle t_{i}\right\rangle$ denotes the encoding of tuple t_{i} according to rule (d).
By way of example, consider the machine $M_{\text {pred }}$ with states $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$, initial state q_{0}, and transition function specified by the set of quintuples
$$
\left\{\left(q_{0}, 0, q_{0}, 0, R\right),\left(q_{0}, 1, q_{0}, 1, R\right),\left(q_{0}, \hbar, q_{1}, \hbar, L\right),\left(q_{1}, 0, q_{1}, 1, L\right),\left(q_{1}, 1, q_{2}, 0, R\right)\right\}
$$
(On input $x \in\{0,1\}^{*}$, the machine $M_{\text {pred }}$ computes $y=x-1$, where x and y are interpreted as binary numbers, note that if x represents the number 0 then the machine falls off the left end of its tape.) The encoding $\left\langle M_{\text {pred }}\right\rangle$ of $M_{\text {pred }}$ obtained by applying rules (a)-(e) is
$$
0000001 * 0010011 * 00 \mathrm{~B} 01 \mathrm{~B} 0 * 0100110 * 0111001 .
$$

Note that we have set $k=2$, and made the obvious correspondence between the states of $M_{\text {pred }}$ and the binary numbers 00,01 , and 10.
§6.2. A universal Turing machine. The universal Turing machine M_{u} will now be described. The input alphabet of M_{u} is $\left\{0,1, \mathrm{~B}, *, \$,{ }^{\wedge}\right\}$. Suppose it is desired to simulate the computation of machine M on input $x \in\{0,1\}^{*}$. The pair (M, x) would then be presented to the universal machine M_{u} in the following format:

$$
\$ 0^{k+1} *\langle M\rangle \$^{\wedge} x .
$$

Thus, to simulate $M_{\text {pred }}$ on input 1011, we would initialize the tape of M_{u} to read as follows:

$$
\begin{equation*}
\$ 000 * 0000001 * 0010011 * 00 \mathrm{~B} 01 \mathrm{~B} 0 * 0100110 * 0111001 \$ \wedge 1011 . \tag{*}
\end{equation*}
$$

The simulation proceeds in a succession of cycles; in a single cycle, the simulated machine progresses by one step. We shall work through a single cycle of M_{u}, using the simulation of $M_{\text {pred }}$ as an example.

Suppose the tape of M_{u} is initialized as shown in (*). After five cycles, the contents of the tape of M_{u} will in fact be

The tape contents can be interpreted as follows. The first k symbols following the leftmost \$ encode the current state of the simulated machine, in this case q_{1}. The next symbol can be ignored. Then, sandwiched between an asterisk and a dollar symbol, is the encoding of the simulated machine. Finally come the tape contents of the simulated machine, with a caret mark ^ indicating the position of the tape head. (In this instance, the tape contents are 1011, and the head is scanning the final 1.)

A cycle of M_{u} naturally breaks down into six phases, which are now described. Reading the scanned symbol. The machine M_{u} locates the caret mark, and remembers the symbol (0,1 , or \hbar) that appears immediately to its right. M_{u} then moves left and writes the corresponding code (0,1 , or B) immediately to the left of the leftmost asterisk. In our example, the scanned symbol is 1:
$\$ 011 * 0000001 * 0010011 * 00 \mathrm{B01B0} * 0100110 * 0111001 \$ 101^{\wedge} 1$.
This operation is accomplished by the states read0, read1, \ldots, read6 with their associated transitions in the machine univ.tm that you can download from the course web page. (Note: that machine is slightly different from the one described here, with an additional tape symbol to make it simpler to write down.)
Locating the quintuple. The string of symbols between the dollar and the first asterisk is now $\langle q\rangle\langle s\rangle$, where q is the state of the simulated machine, and s is the scanned symbol. The tuple that governs the next transition (if any) is the one that has $\langle q\rangle\langle s\rangle$ as a prefix (in this case, the final tuple in the encoding). The machine M_{u} searches right along the tape until it locates the prefix in question, making the substitutions $0 \rightarrow \mathrm{X}, 1 \rightarrow \mathrm{Y}$, and $\mathrm{B} \rightarrow \mathrm{Z}$ as it goes. If the prefix is not found, M_{u} halts. In our example, the tape now reads:

$$
\$ 011 * X X X X X X Y * X X Y X X Y Y * X X Z X Y Z X * X Y X X Y Y X * X Y Y 1001 \$ 101^{\wedge} 1 .
$$

This task is performed by the states loc0, loc1, \ldots, loc6.
Fetching the new state and symbol. Immediately following the prefix just located is a substring of length $k+1$ that encodes the new state q^{\prime} and new symbol s^{\prime}. This substring is copied into the $k+1$ squares immediately to the right of the initial dollar symbol. During the copying operation, the substitutions $0 \rightarrow \mathrm{X}, 1 \rightarrow \mathrm{Y}$, and $\mathrm{B} \rightarrow \mathrm{Z}$ are applied. In our example, the tape now reads
\$YXX*XXXXXXY*XXYXXYY*XXZXYZX*XYXXYYX*XYYYXXY\$101^1.

This task is performed by the states fetch0, fetch1, ..., fetch7.
Printing the new symbol. The symbol immediately to the left of the first asterisk is the code for the new symbol $s^{\prime} . M_{u}$ remembers this symbol and transfers
it to the tape square immediately to the right of the caret mark. In our example, the new symbol is 0 :

> \$YXX*XXXXXXY*XXYXXYY*XXZXYZX*XYXXYYX*XYYYXXY\$101^0.

This task is performed by states print0, print1, ..., print7.
Moving the tape head. M_{u} now looks for the first occurrence of X or Y to the left of the caret mark; this symbol determines whether the head (caret mark) should be moved left (X) or right (Y). M_{u} now swaps the caret mark with its left or right neighbour, as appropriate. In our example, the caret mark is shifted right:
\$YXX*XXXXXXY*XXYXXYY*XXZXYZX*XYXXYYX*XYYYXXY\$1010^.

This task is performed by the states move0, move1, ..., move6.
Tidying the tape. The machine encoding is returned to its original condition in readiness for the following cycle. This involves applying the substitutions $\mathrm{X} \rightarrow 0$, $\mathrm{Y} \rightarrow 1$, and $\mathrm{Z} \rightarrow \mathrm{B}$ uniformly along the tape. In our example the tape now reads

$$
\$ 100 * 0000001 * 0010011 * 00 \mathrm{BO} 01 \mathrm{~B} 0 * 0100110 * 0111001 \$ 1010^{\wedge} \text {. }
$$

The task is performed by states tidy0 and tidy 1.
This completes the description of a typical cycle of M_{u}.
§6.3. Removing the restrictions. To keep the universal machine relatively simple, we have restricted the class of machines that can be directly simulated to binary Turing machines with input alphabet $\{0,1\}$ and tape alphabet $\{0,1, \hbar\}$. This is no great loss, since any Turing machine can be transformed into an equivalent binary Turing machine by encoding each of the tape symbols by a fixed length block of binary digits. (We shall return to this point in Note 7.)

However, with a certain amount of extra work, it would be possible to construct a universal Turing machine that could simulate machines with general tape alphabet. The encoding presented here would need to be extended, each of the symbols in the tape alphabet receiving a k^{\prime}-bit binary code for appropriately chosen k^{\prime}. The phases of the simulation would be much as before, although the subroutines for reading and writing the tape symbol, and shifting the tape head, would be somewhat more complicated.

[^0]: ${ }^{18}$ (more accurately, stored program machines)

