
UG3 Computability and Intractability (2009-2010): Note 6

§6. Universal Turing machines. The quality that distinguished the first
digital computers18 from all previous machines was flexibility. By placing the
operation of the machine under the control of a program, the digital computer
could be adapted to a wide range of applications.

Until now, we have thought of a Turing machine as being a fixed piece of
hardware performing a specialized function. However, if the Turing machine really
is a sound model of computation, it should be possible to demonstrate that it can
act as a stored program machine, where the program is regarded as an input,
rather than hard-wired. That is the purpose of this note. We shall construct a
Turing machine Mu that takes as input a description of a Turing machine M and
an input word x, and simulates the computation of M on input x (cf. the program
descriptions in §1.3 of Note 1). A machine such as Mu that can simulate the
behaviour of an arbitrary Turing machine is called a universal Turing machine.

To simplify our task, we shall make two assumptions about the machine M that
the universal machine is required to simulate. The more significant simplification
is that the input and tape alphabets of M are fixed in advance; specifically the
input alphabet of M is Σ = {0, 1}, and the tape alphabet is Γ = {0, 1, b̄}. We
shall refer to such a machine as a binary Turing machine. The less significant
simplification is that we do not allow M the luxury of a final state. Instead, we
assume the existence of some other criterion for acceptance; for example, we might
agree that M has accepted its input if M gets stuck in a certain state.

§6.1. Encoding Turing machines. Let M = (Q, qI , δ) be a Turing machine of
the above form; M is simply a triple because Σ, Γ, and b̄ are fixed in advance,
and the final state is absent. In order to present M as an input to the universal
machine Mu, it is first necessary to encode M as a word over some fixed alphabet.
The rules (a)–(e) that follow describe a suitable encoding of M as a word over the
alphabet {0, 1, B, *}.

(a) Encode the states of M as elements of {0, 1}k, where k is some suitably
chosen integer, e.g., k = d lg |Q| e. We insist that the initial state qI receives
code 0k, but otherwise the assignment of codes to states is arbitrary.

(b) Encode the tape symbols 0, 1, and b̄ as 0, 1, and B, respectively. (The point
here is that the true blank symbol b̄ must not appear in the encoding.)

(c) Encode the directions left and right by 0 and 1, respectively.

(d) Recall that the transition function δ of M may be viewed a set of quintuples.
Encode a quintuple (q, s, q′, s′, d) as a string 〈q〉〈s〉〈q′〉〈s′〉〈d〉 of length 2k+3;

18(more accurately, stored program machines)

34

here 〈q〉, 〈s〉, 〈q′〉, 〈s′〉, and 〈d〉 are the codes for q, s, q′, s′, and d, as defined
in rules (a)–(c) above.

(e) Suppose that the transition function δ is specified by the m tuples t0, t1, . . . ,
tm−1. Encode the machine M itself as the word

〈M〉 = 〈t0〉*〈t1〉*〈t2〉* · · · *〈tm−1〉,

where 〈ti〉 denotes the encoding of tuple ti according to rule (d).

By way of example, consider the machine Mpred with states Q = {q0, q1, q2}, initial
state q0, and transition function specified by the set of quintuples

{(q0, 0, q0, 0, R), (q0, 1, q0, 1, R), (q0, b̄ , q1, b̄ , L), (q1, 0, q1, 1, L), (q1, 1, q2, 0, R)}.

(On input x ∈ {0, 1}∗, the machine Mpred computes y = x − 1, where x and y are
interpreted as binary numbers, note that if x represents the number 0 then the
machine falls off the left end of its tape.) The encoding 〈Mpred〉 of Mpred obtained
by applying rules (a)–(e) is

0000001*0010011*00B01B0*0100110*0111001.

Note that we have set k = 2, and made the obvious correspondence between the
states of Mpred and the binary numbers 00, 01, and 10.

§6.2. A universal Turing machine. The universal Turing machine Mu will now
be described. The input alphabet of Mu is {0, 1, B, *, $, ^}. Suppose it is desired
to simulate the computation of machine M on input x ∈ {0, 1}∗. The pair (M, x)
would then be presented to the universal machine Mu in the following format:

$0k+1*〈M〉$^x.

Thus, to simulate Mpred on input 1011, we would initialize the tape of Mu to read
as follows:

$000*0000001*0010011*00B01B0*0100110*0111001$^1011. (∗)

The simulation proceeds in a succession of cycles ; in a single cycle, the simulated
machine progresses by one step. We shall work through a single cycle of Mu, using
the simulation of Mpred as an example.

Suppose the tape of Mu is initialized as shown in (∗). After five cycles, the
contents of the tape of Mu will in fact be

$01B*0000001*0010011*00B01B0*0100110*0111001$101^1.

35

The tape contents can be interpreted as follows. The first k symbols following the
leftmost $ encode the current state of the simulated machine, in this case q1. The
next symbol can be ignored. Then, sandwiched between an asterisk and a dollar
symbol, is the encoding of the simulated machine. Finally come the tape contents
of the simulated machine, with a caret mark ^ indicating the position of the tape
head. (In this instance, the tape contents are 1011, and the head is scanning the
final 1.)

A cycle of Mu naturally breaks down into six phases, which are now described.

Reading the scanned symbol. The machine Mu locates the caret mark, and
remembers the symbol (0, 1, or b̄) that appears immediately to its right. Mu then
moves left and writes the corresponding code (0, 1, or B) immediately to the left
of the leftmost asterisk. In our example, the scanned symbol is 1:

$011*0000001*0010011*00B01B0*0100110*0111001$101^1.

This operation is accomplished by the states read0, read1, . . . , read6 with their
associated transitions in the machine univ.tm that you can download from the
course web page. (Note: that machine is slightly different from the one described
here, with an additional tape symbol to make it simpler to write down.)

Locating the quintuple. The string of symbols between the dollar and the
first asterisk is now 〈q〉〈s〉, where q is the state of the simulated machine, and s
is the scanned symbol. The tuple that governs the next transition (if any) is the
one that has 〈q〉〈s〉 as a prefix (in this case, the final tuple in the encoding). The
machine Mu searches right along the tape until it locates the prefix in question,
making the substitutions 0 → X, 1 → Y, and B → Z as it goes. If the prefix is not
found, Mu halts. In our example, the tape now reads:

$011*XXXXXXY*XXYXXYY*XXZXYZX*XYXXYYX*XYY1001$101^1.

This task is performed by the states loc0, loc1, . . . , loc6.

Fetching the new state and symbol. Immediately following the prefix just
located is a substring of length k + 1 that encodes the new state q′ and new
symbol s′. This substring is copied into the k + 1 squares immediately to the
right of the initial dollar symbol. During the copying operation, the substitutions
0 → X, 1 → Y, and B → Z are applied. In our example, the tape now reads

$YXX*XXXXXXY*XXYXXYY*XXZXYZX*XYXXYYX*XYYYXXY$101^1.

This task is performed by the states fetch0, fetch1, . . . , fetch7.

Printing the new symbol. The symbol immediately to the left of the first
asterisk is the code for the new symbol s′. Mu remembers this symbol and transfers

36

it to the tape square immediately to the right of the caret mark. In our example,
the new symbol is 0:

$YXX*XXXXXXY*XXYXXYY*XXZXYZX*XYXXYYX*XYYYXXY$101^0.

This task is performed by states print0, print1, . . . , print7.

Moving the tape head. Mu now looks for the first occurrence of X or Y to
the left of the caret mark; this symbol determines whether the head (caret mark)
should be moved left (X) or right (Y). Mu now swaps the caret mark with its left
or right neighbour, as appropriate. In our example, the caret mark is shifted right:

$YXX*XXXXXXY*XXYXXYY*XXZXYZX*XYXXYYX*XYYYXXY$1010^.

This task is performed by the states move0, move1, . . . , move6.

Tidying the tape. The machine encoding is returned to its original condition in
readiness for the following cycle. This involves applying the substitutions X → 0,
Y → 1, and Z → B uniformly along the tape. In our example the tape now reads

$100*0000001*0010011*00B01B0*0100110*0111001$1010^.

The task is performed by states tidy0 and tidy1.
This completes the description of a typical cycle of Mu.

§6.3. Removing the restrictions. To keep the universal machine relatively
simple, we have restricted the class of machines that can be directly simulated to
binary Turing machines with input alphabet {0, 1} and tape alphabet {0, 1, b̄}.
This is no great loss, since any Turing machine can be transformed into an equiva-
lent binary Turing machine by encoding each of the tape symbols by a fixed length
block of binary digits. (We shall return to this point in Note 7.)

However, with a certain amount of extra work, it would be possible to construct
a universal Turing machine that could simulate machines with general tape alpha-
bet. The encoding presented here would need to be extended, each of the symbols
in the tape alphabet receiving a k′-bit binary code for appropriately chosen k′.
The phases of the simulation would be much as before, although the subroutines
for reading and writing the tape symbol, and shifting the tape head, would be
somewhat more complicated.

37

