
UG3 Computability and Intractability (2009-2010): Note 5

§5. Random Access Machines (RAMs). Over the years, many different
formulations of the notion of effective computability have been proposed. These
formulations differ widely in appearance; nevertheless, whenever a new formulation
has been proposed, it has always turned out to be equivalent to all previous ones.
Our failure to find a reasonable model of computation which properly extends the
notion of effective computability provides what is perhaps the most convincing
empirical evidence in support of Turing’s thesis.

In this note, we consider a model of computation very different from the Turing
machine, namely the Random Access Machine, or RAM. In the context of the
Computability and Intractability course, the significance of the RAM is that it
provides a relatively simple basis for computation which is not far removed from
real computers. Thus, in introducing the RAM, we bring into play all the intuition
about computation that we have gained in the past two (or more) years.

As its name suggests, the main feature of the RAM is its ability to access data
by address, rather than merely sequentially as in a Turing machine. (The rela-
tionship between the two models can be likened to the relationship between array
and doubly-linked list as data-structuring techniques.) Despite the apparently less
restricted nature of computation on a RAM, we shall show, in due course, that
the RAM and Turing machine are of equivalent power.

§5.1. Syntax of RAM programs. The syntax of a RAM program is presented
below, in Backus-Naur form.

program = instruction program | instruction

instruction = [label :] (accept

| reject
| read l value

| l value := r value arithmetic op r value

| if r value relational op r value goto label)

l value = 'integer | " integer

r value = integer | 'integer | " integer

arithmetic op = + | - | * | div
relational op = = | <> | <= | <

label = alphanumeric sequence.

The non-terminal integer is intended to stand for an arbitrary signed decimal
(whole) number. Naturally enough, we insist that no two instructions are assigned
the same label, and that every conditional jump refers to an existent label.

27

We shall assign a precise meaning to RAM programs in the following section.
Roughly speaking, however, an unquoted integer denotes a constant, an integer
prefixed by a single quote is to be interpreted as a direct address, and an integer
prefixed by a double quote is to be interpreted as an indirect address. Armed with
this clue, the reader should already be able to guess the meaning of many, if not
all the instruction types.

§5.2. Semantics of RAM programs. We assign meaning to a RAM program
by introducing the notion of state of a random access machine. Informally, a
RAM has an infinite number of registers, each containing an arbitrary integer.
The registers are indexed by the integers; the index of a register is sometimes
called its address. Before execution of a program, all registers contain zero. The
instructions of a program are thought of as being numbered in sequence, starting
at zero. A particular instruction of the program is picked out by an instruction
counter, which is a natural number; this instruction counter is initialized to zero.
Execution of the program proceeds in a sequence of steps. In a single step, the
instruction indicated by the instruction counter is executed, as a result of which
the state of the machine and the instruction counter are updated. The state and
instruction counter together play the role of configuration in the Turing machine
model.

Formally, the state of a RAM is a function s : Z → Z, which defines the
content s(i) of each register i. The function s has a finite description, being
zero on all but a finite subset of Z. The initial state of a RAM (before the
program executes) is the zero function. Before describing the effect of executing
each instruction type, it is convenient to introduce some terminology and notation.
If R is an r value and s a state, then the result of evaluating R in context s is an
integer value v given by

v =

k, if R = k;
s(k), if R = 'k;
s(s(k)), if R = " k.

If L is an l value and s a state, then the result of evaluating L in context s is an
integer address a given by

a =

{
k, if L = 'k;
s(k), if L = " k.

Finally, if s is a state, v an integer value, and a an integer address, then update(s, v, a)
denotes the new state s′ : Z → Z given by

s′(i) =

{
v, if i = a;
s(i), otherwise.

28

Informally, the new state s′ agrees with the old state s at all points except a, where
s′(a) = v independent of the value of s(a).

We are now in a position to assign a meaning to each instruction by specifying
how that instruction modifies the state and instruction counter. Let s denote
the state before execution of the instruction in question, and s′ denote the state
afterwards.

(a) accept: The RAM halts, and is deemed to have accepted its input.

(b) reject: The RAM halts, and is deemed to have rejected its input.

(c) read L: The input to a RAM is a stream of integers. The next value, say v,
is removed from the stream. Let a be the result of evaluating L in context s.
Then s′ becomes update(s, v, a), and the instruction counter is incremented
by one.

(d) L := R1 ◦ R2: Let a, v1, and v2 be the results of evaluating L, R1, and R2

in context s, and let v = v1 ◦ v2.
16 Then s′ becomes update(s, v, a), and the

instruction counter is incremented by one.

(e) if R1 ◦ R2 goto λ: Let v1 and v2 be the results of evaluating R1 and R2 in
context s. If v1 ◦ v2 is false, the instruction counter is incremented by one.17

If v1 ◦ v2 is true, the instruction counter is set to the index of the instruction
labelled by λ. In either case the state is unchanged, i.e., s′ = s.

After executing the (syntactically) last instruction of a program, the instruction
counter may no longer contain a meaningful value; in that case the RAM halts
and rejects.

A random access machine M of the form described above can be viewed as a
language acceptor. Let Σ be a finite input alphabet, and associate the symbols
of Σ with the numbers 1, 2, 3, . . . , |Σ|. Then a word x ∈ Σn can be presented to
the RAM as a sequence of n positive numbers (encoding elements of Σ) followed
by 0 (which can be thought of as an end-of-input marker or blank symbol). The
language L(M) accepted by M is then the set of words x ∈ Σ∗ on which M
halts and accepts. It is a straightforward task to extend the model to encompass
transducers by adding a instruction of the form ‘write r value’ to the repertoire
of instructions.

§5.3. Example: recognizing palindromes. The RAM program in the accom-

16The operator * denotes integer multiplication and div denotes integer division. Thus div
takes two integers v1 and v2, with v2 > 0, and yields the unique integer v satisfying 0 ≤ v1−vv2 <
v2; if v2 ≤ 0 the program halts and rejects.

17The relational operator <> means ‘not equal’ while =, <=, and < have the obvious meaning.

29

'1 := 2
next symbol: read "1

if "1 = 0 goto end of input

'1 := '1 + 1
if 0 = 0 goto next symbol

end of input: '1 := '1 - 1
'0 := 2

loop: if '1 <= '0 goto yes
if "0 <> "1 goto no
'0 := '0 + 1
'1 := '1 - 1
if 0 = 0 goto loop

yes: accept
no: reject

Figure 5: A RAM program for recognizing palindromes

panying figure accepts the language of palindromes over {a, b}, where a is encoded
as 1, and b as 2. The n symbols of the input are read into registers 2 to n + 1,
which can be thought of as constituting an n-element array. Registers 0 and 1
are used to implement indices, i and j say, into this array. Initially, i = 2 and
j = n + 1. At each iteration, the array elements indexed by i and j are compared.
If these elements are found to be unequal then the input was not a palindrome
and the program halts and rejects. Otherwise the index i is incremented, and j
decremented. If the pointers cross (i.e, j becomes less than or equal to i) then the
input was a palindrome and the program halts and accepts.

§5.4. Redundancy. The RAM model described in this note contains a fair
number of redundant features. It is not too difficult to show that the arithmetic
operators +, *, and div can be removed without affecting the class of languages that
can be recognized. Likewise, the relational operators =, <>, and < are redundant.
More surprisingly, as we shall see later, it is possible to make do with a fixed, finite
set of registers, and to dispense with indirect addressing entirely!

§5.5. Bounded RAMs. A RAM with bounded registers differs from the conven-
tional RAM defined above in only one respect: rather than containing arbitrary
integers, the registers are now restricted to contain integers in some bounded range
{−N,−N +1, . . . , N−1, N} (where N is fixed for any given machine but can vary
from one machine to the next). More formally, the state of a RAM with bounded
registers is a function s : Z → {−N,−N +1, . . . , N−1, N}. Note that the number
of registers is still infinite. Clearly bounded RAMs are no more powerful than

30

ordinary ones; anything accepted by a bounded RAM can be accepted by an un-
bouded one. However the converse relation is not immediately clear. It is possible
to provide an informal argument that seems to show that bounded RAMs are as
powerful as ordinary ones; however this is not the case and we proceed to prove
this.

Let P be a program with l instructions for a RAM with bounded registers. At
any point in the execution of P , how many registers can contain a value other than
zero (the initial value)? Well, at most l registers may be directly addressed via
instructions of the form read 'k and 'k := ?, and a further 2N + 1 registers may
be accessed indirectly via instructions of the form read "k and "k := ?, making a
total of 2N + l + 1 in all. Let a ‘configuration’ of the RAM be the combination of
the state and instruction counter. The total number of configurations is bounded
by M = l(2N + 1)2N+l+1.

A ‘pumping lemma’ style argument now establishes that no such program P
can recognize, for example, the language of all binary palindromes. Suppose, to
the contrary, that there did exist such a P . Let n satisfy 2n > M , and consider
the computation of P on inputs of the form xxR where x is a binary word of
length n (xR denotes the string x written in reverse). In particular, consider the
configuration of the RAM at an instant just before the (n + 1)th input symbol is
read. By the pigeonhole principle there must be distinct words x and y such that
the inputs xxR and yyR drive P into the same configuration. But then P would
accept input xyR which is not a palindrome.

The argument given above makes use of the following simple observation: sup-
pose we have a finite set C (in our case this consists of configurations) and a
(partial) function d : C → C (in our case this is the next move, if any, from a given
configuration). Suppose d(C), d(d(C)), . . . are all defined for C ∈ C and consider
a sequence:

C1 = C,

C2 = d(C1),

C3 = d(C2),

...

Ci = d(Ci−1),

...

If the sequence is continued for long enough (so that d(Ci) is defined each time)
then it is bound to repeat, i.e., there will be indices 1 ≤ r < s such that Cr = Cs.

Exercise What is the longest, in terms of |C|, that we have to wait before a
repeat in the sequence given above?

31

§5.6. Equivalence of Turing machines and RAMs. None of us has yet
conceived of a procedure which could reasonably be described as effective, but
which could not be expressed in a high-level programming language such as Java.
Our failure to find such an object—in over two years of programming—can be
regarded as empirical evidence in favour of the proposition that every effective
procedure could, in principle, be expressed in Java.

Next, we are aware that any Java program can be translated into machine
code, as long as we set aside the limitations inherent in a bounded word-size and
bounded address-space. This, of course, is exactly the job of a Java compiler, and
we have definite evidence that such things exist. Finally, the RAM model has at
least the power of a conventional machine code, but without the restrictions which
attach to bounded word-size or address-space. We thus have convincing empirical
evidence that any effective procedure can be expressed as a RAM program.

Our experience with Turing machines may be closer to a few weeks than two
years, and we may be less convinced that every effective procedure may be de-
scribed by a Turing machine. Surely any such doubts will be dispelled if we
demonstrate that Turing machines are at least as powerful as RAMs, thus pro-
viding convincing empirical evidence in support of Turing’s Thesis. (Refer to
Note 2.) The claim is made precise in the following theorem.

Theorem 5.1 Let L be a language over some alphabet Σ. If there is a RAM that
accepts L, then there is a Turing machine that also accepts L.

In fact Turing machines are no more powerful than RAMs as can shown by proving
the converse to the preceding theorem. It is interesting that rather more can be
demonstrated. A three-register RAM is a random access machine, as defined above,
but having just three registers, with addresses −1, 0, and 1. The state of a three
register RAM is thus a function from {−1, 0, 1} to Z. To avoid referencing non-
existent registers we place a severe restriction on the form of l values and r values
that may occur in a program for a three-register RAM: the only l values allowed
are '-1, '0, and '1; and the only r values allowed are '-1, '0, '1, and signed
decimal constants. Note that ‘indirect addressing’ is forbidden.

Theorem 5.2 Let L be a language over some alphabet Σ. If there is a Turing
machine that accepts L, then there is a three-register RAM that also accepts L.

The proof of Theorem 5.1 is given in Appendix B and that of Theorem 5.2 in
Appendix C. (We note that both theorems hold if we regard the machines as
transducers rather than language acceptors.) The proofs are constructive in that
they show us how, given a machine of one type that accepts L, we can produce a
machine of the other type that also accepts L (cf. the proof of Theorem 4.1).

§5.7. Recursively enumerable languages. It is a good time to take stock of
the situation. Let CTM (respectively, CRAM, C3RAM) be the class of all languages

32

that are accepted by some Turing machine (respectively, RAM, three-register
RAM). We know from Theorem 5.1 that CRAM ⊆ CTM, and from Theorem 5.2
that CTM ⊆ C3RAM. Furthermore, since a three-register RAM is a special case of a
RAM, it is clear that C3RAM ⊆ CRAM. It follows from these three inclusions that
CTM = CRAM = C3RAM. Thus, three language classes defined in very different ways
turn out to be the same class. This observation strongly suggests that the class of
languages has a special significance, and warrants a special name. For historical
reasons (which we shall not pursue here) languages in CTM are called recursively
enumerable (usually abbreviated to r.e.), and CTM is the class of recursively enu-
merable languages. Note that the equality of the three language classes CTM, CRAM,
and C3RAM is further compelling evidence in support of Turing’s thesis (Note 2).

33

